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Probing polyelectrolyte elasticity using radial distribution function
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We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a
single polyelectrolyte chain in the rodlike limit. The extent to which the radial distribution function of a
polyelectrolyte is reproduced by that of a wormlike chain with an adjusted persistence length is investigated.
Strong evidence is found for a universal scaling formula connecting the effective persistence length of a
polyelectrolyte with its linear charge density and the Debye screening of its self-interaction. An alternative
definition of the electrostatic persistence length is proposed based on matching of the maximum of the distri-
bution with that of an effective wormlike chain, as opposed to the traditional matching of the first or the second
moments of the distributions. It is shown that this definition provides a more accurate probe of the affinity of
the distribution to that of the wormlike chains, as compared to the traditional definition. It is also found that the
length of a polyelectrolyte segment can act as a crucial parameter in determining its elastic properties.
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I. INTRODUCTION AND SUMMARY notion, which replaces the many length scales in a polyelec-
troyte by a single effective persistence length, have been
The close connection between the elasticity of rodlike cy-commented in Refd6,8,9. Additionally, codifying electro-
toskeletal polymers and the mechanical properties of cellstatic interactions in terms of single length ignores the pos-
has been extensively documen{dd-3]. For example, actin sibility of chain collapse resulting from fluctuation-induced
filaments are known to play a crucial role in the recovery ofself-attraction 10].
eukaryotic cell shape in the face of the stresses imposed by If a suitably modified WLC model did, indeed, provide a
cell movement, growth, and division. Furthermore, the stiff-working model for the calculation of the conformational
ness of DNA constrains and controls both its storage in th@roperties of polyelectrolytes, then a number of powerful
cell nucleus and access to it by the proteins and enzymes thegsults could be brought to bear on the study of this system.
are central to its role in biological processes. However, therdmong the more useful of these is the recently derived end-
is, as yet, no complete, quantitative understanding of the reo-end distributio{ 11] of short segments of an inextensible
lationship between the elastic attributes of these polymerpolymer[12]. The distribution, which is expected to apply to
and the influences that control them. Such an understandirgegments whose backbone length is less than the persistence
is crucial to the development of a general description of théength of the polymer—the rodlike limit—was shown to be
functionality of polymers. accurate both in that limit and somewhat outside it. The dis-
An additional spur to an increased focus on the connectribution possesses the virtue that it can, in principle, be uti-
tion between first-principles energetics and the elastic chalized in the analysis of currently feasible experiments on
acteristics of polyelectrolytes is the fact that experimentapolymers in the rodlike limif13]. One can, then, determine
techniques have been developed that allow for the imagingvhether or not the WLC model accurately reflects the prop-
of single filaments in solutiof4]. This means that it is now erties of the polymer segments in question. If the model has
possible to test models and theoretical predictions at the levddeen shown to apply, then the fit of the distribution to the
of a single-chain polymer. data directly yields the persistence length and, hence, the
The key challenge in this area is to produce a theoreticatlastic modulus of the polymer.
analysis that connects the electrostatic interactions and local An additional advantage of the end-to-end distribution
energetics of a polyelectrolyte with its overall mechanicalfunction is that it is a function, rather than a number. That is,
properties. In the case of neutral chain polymers, the wormthe end-to-end distribution function contains, at least in prin-
like chain(WLC) model of Kratky and Porofb] provides a  ciple, an infinitely greater amount of information than can be
powerful and convenient characterization of flexibility, encoded in a single quantity. The distribution thus represents
through thepersistence lengthwhich is the decay length of a more comprehensive characterization of the elastic and
the tangent-tangent correlation function of a stiff, inexten-thermal characteristics of a charged semiflexible chain. In
sible polymer chain. The lack of a similarly inclusive and this sense, it provides one with an opportunity to disentangle
readily implemented model for polyelectrolytes has been adthe actions of electrostatic and mechanical interactions, as
dressed through the application of the WLC model to poly-they affect the conformational properties of a fluctuating
electrolytes, with the introduction of an effective, “electro- polyelectrolyte(PE).
static,” persistence length6,7]. The shortcomings of this In this paper, we calculate the end-to-end distribution of a
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charged, inextensible, semiflexible chain. This distribution istence length can be extracted from the end-to-end distribu-
then utilized to address two central questions relating to théion, and we justify the method of choice in this investiga-
conformational statistics of a polyelectrolyte. Those question, which is based on the location of the maximum of the
tions are as follows: end-to-end distribution. We find that our results are consis-
(1) Under what circumstances is the end-to-end distribuient with Odijk’s formula when the distribution we calculate
tion of the PE’s reproduced by the end-to-end distribution ofcan be made to collapse on the end-to-end distribution of an
a WLC with an adjusted persistence length? uncharged WLC. Conversely,_ our rgsult_s _do not agree \_/vith
(2) Under what circumstances will the effective persis-the Odijk formula when the distribution is inconsistent with

tence length of a PE be as predicted by existing formulas2that of a WLC Wit'h adjusted persistence length. We find that
As will be shown below, we are able to identify regimes the effective persistence length of the end-to-end distribution
associated with strong electrostatic coupling, weak screerjdnction can be described by a “universal” formula, incor-

ing, or high intrinsic flexibility of the PE’s, in which the Porating a scaling form and an unexpected power law. This

end-to-end distribution deviates from that of a WLC. We arelormula holds whether or not the effective persistence length

also able to identify the regions in which this approximation!$ described by Odijk's expression. Section VI focuses on

is accurate. The concept of electrostatic persistence length {8iS Pehavior of the effective persistence length. Section VI
examined, and an alternative definition of this importantd'scusses issues related to the moments of the distribution,

length scale is suggested. Our alternatively defined electrgd the use of those moments to define a persistence length.
static persistence length is compared with a well-known and€ction Vil concludes the paper.

widely utilized formula for the persistence length of a stiff,
charged rod6]. This electrostatic persistence length is found
to obey a universal crossover scaling law.

The rest of the paper is organized as follows: Sec. Il de- Because of the inextensibility of the polyelectrolytes un-
scribes the model that we use to study the elasticity of stifder consideratiofl2,14], we adopt Kratky and Porod worm-
PE’s. This model is a straighforward extension of the Kratky-like chain model5] to describe the bending energy of the
Porod model of a WLC. The energy of this system consistghain. In this model, polymers are represented by a space
of the mechanical energy required to induce a local curvatureurver(s) as a function of the arclength paramegefThe
in the chain and the screened electrostatic repulsion betwegotal energy of the chain, which is the sum of the intrinsic
the charges on the chain, which are assumed to be uniformiglasticity and the electrostatic energy, can be written as
distributed along it, in the form of a constant linear charge
density. The distribution function of the end-to-end distance ,
of this chain is then introduced and given a precise math- H  €po Ld di(s)\* B (L ge_"lr(s)_r(s )
ematical form. An expression for this distribution is derived,  kgT TL S\ Tds_ +§f0 dsd r(s)—r(s)|’
under the assumption that the chain does not undergo too (1)
much of a distortion from its minimum-energy configuration
as a straight line. That expression, which is based on the
eigenvalues of the Hamiltonian of the PE’s, forms the basigvheret is the unit tangent vector. We do not take into ac-
of all the results reported in this paper. Details of the expancount the fluctuations in the charges localized to the chain
sion of the electrostatic self-interaction about the rodlikeand in the counterion system that can give rise to attractive
configuration are presented in Appendix A. Section IIl isinteractions leading to chain collapgEQ]. The above equa-
devoted to a discussion on the structure of those energy efion contains several different length scaleh: the average
genvalues. The influence of the electrostatic interaction$eparation between neighboring charges(2) the Debye
which is most pronounced at on the lower eigenvalues, i§creening length ™, (3) the Bjerrum length €
discussed. Also discussed are the methods and criteria uti€°/€kgT, the quantitye being the dielectric constant of the
lized to guarantee the numerical reliability of the end-to-endon-free solvent(4) the intrinsic persistence length,,, and
distribution. Section 1l B briefly summarizes exact results(5) the total chain lengthL. Two of these length scales,
that have been obtained for the eigenvalues of the Hamilnamely{g andb, always appear together in the form of the
tonian consisting entirely of the unscreened Coulomb inter¥atio €g/b?, which is denoted by3 in Eq. (1).
action. These results are relevant to the conformational sta- We can thus construct three independent dimensionless
tistics of a chain stiffened entirely by such interactions. Aratios: SL (a measure of the strength of the electrostatic in-
more detailed description of the way in which the resultsteraction$, L (a measure of the degree of screepjrand
were obtained is relegated to Appendix B. Section IV pre-f /L (a measure of the intrinsic flexibilityA comprehen-
sents the results for the distribution function in various situ-sive exploration of parameter space entails the examination
ations. Particular attention is paid to the question of the reof the effects associated with a change in the electrostatic
lationship between the distribution function calculated herecoupling and the degree of screening. We focus on inexten-
and the corresponding end-to-end distribution function of esible chains that are substantially stiffened by their bending
neutral rodlike semiflexible polymer. Section V scrutinizesenergy ¢ ,0~L) and for which the bending energy alone is
the concept of electrostatic persistence length. The point dhsufficient to keep the chain nearly rodliké o<L). The
comparison is a general formula for the persistence lengthghain is assumed to be sufficiently stiff such that the ex-
introduced by Odijk. We discuss the ways in which a persis<luded volume does not play a role.

Il. MODEL ELASTICITY FOR POLYELECTROLYTES

021803-2



PROBING POLYELECTROLYTE ELASTICITY USING . .. PHYSICAL REVIEW B7, 021803 (2003

The end-to-end distribution function is defined as follows: L » dk (/D)2 + K2+ K2

_ Z2 2 z

Enm—z—J ——Z(K2+ k2)In| ——————=

Tnmj) _.2m K2+k§
G(r)=(s(r—R)), 2
(k L) (kL w(n—m))
sin sin R
where R=r(L)—r(0). The average in Eq(2) is over an 2 2 2

ensemble of PE chains. The functig(r) is, then, the prob- X CO{E(n_ m)
ability that a given chain in the ensemble will have an end-

k[k,— (n—m)a/L]

to-end distance equal ta We make use of the procedure sin kL mn sin kL mm
that Wilhelm and Frey have implemented to calculate the 2 2 2 2
end-to-end distribution function for inextensi_b!e. neutral - (k,—n7/L)(K,— ma/L) —co §(n+ m)
polymers[12]. In order to calculat&;(r) in the vicinity of
the rodlike limit, we restrict our consideration to regions in k,L k, L m(n+m)
which the combination of intrinsic stiffness and repulsive sin| —-|sin| —- 2
strength of the Coulomb interaction keeps the chains in their K[K,— (Nt m)a/L]
rodlike limit [15]. Using the integral representation of the 4z &
function, we can writej(r) as k,L wn k,L mm
s 5+ 5 S'”(T‘T)
1 L ~ (ky+na/L)(k,— ma/L
Gr=5 p{i,u,r—i,u,f dsi(s) (ke nm/b) (e mall)
0 1 . (/D)2 + K2+ K>
oK1 +—f —(K5+«?)In —
o [t (dt(s) Bf ] L) w2m K2+ K2
2 Jo |r s)—r(s")| . kL
(3) RS S 27 ©
dk2 k?

in which Z= [ Dt(s)exp(—H/kgT). We then parametrize the

unit tangent field as are the elements of the electrostatic energy matrix in the
cosine basis set, witlh, the average separation between
neighboring charges, serving as the short distance cutoff.

(s)= (ax(s).ay(s),1) 4) Performing the functional integral ovey,,, we then ob-
Vi+al(s)+aj(s)’ tain
1 “do gy detT]
ifinerVhiCh the constraint of inextensibility is manifestly satis- ~ G(r)=~8(r)4(ry) o€ e T iwl]’
(7)

Making use of the relatiom(s)—r(s")= fs dut(u), we
expand the screened Coulomb interaction about the rodlikethere T= (nw)2(€po/L)l+,8LE | is the identity matrix,
configuration to quadratic order &(s) = (a,(s), ay(s)) (see andw=—u,L. Note that the distribution function in E7)
Appendix A for details. We then use the series expansionis manifestly normalized to unity, i.efd®*G(r)=1. We can
a(s)=23_,A,cosanslL) as appropriate for the open-end then integrate over the orientational degrees of freedom to
boundary condition, and assume for simplicity thas, on  find the radial distribution function,
average, oriented along thezaxis so that Ag

=b(t1{\/§)f'6dsa(s)=0. Substituting Eq(A1) in Eq. (3), we G(r)=r f sin 0d9f deg(r), )
obtain
. . that is, subject to the normalizatigifdrG(r)=1. Usingr
1 d°u f . . =(r sinfcosg¢,r sindsin¢,r cose), we obtain
r=— d2Aexp i wr —iu,L ' ' '
G(r) ZJ (277_)3 Hl n P{ M Mz
1= do de{T]
— To(1l— r/L)+ iw(1+r/L)
il & € & G(r)= 2a1° € et i’
G S p2 TR0 S (y2p2 -
2 & e " ©)
BL o which can be rewritten as
5 o2, AnAnEnn 5 oy TN
_ 799 @) et n
G(r) LJ,mzw[e Te 11T Notio)
where (10
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FIG. 1. Eigenvalues of electrostatic energy matrix calculated

from Eq.(6), atL/b=1000 andxL =10 (dashed curve compared
to the eigenvalues calculated in the infinite length limit in Egl)
(solid curve.

in terms of the eigenvalues, of the matrix T. Contour
integration then yields

©

G(r)= 2, Af(m[e M Da(L—r)+e b,
n=1
(11)

with
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FIG. 2. (Color online only Eigenvalues of an elastic charged
rod with €,,/L=0.5, kL=0, andBL =500. The bending eigenen-
ergies are distinguishable from total ones only for lower values of
Comparison of the first 20 eigenvalues of bendisglid line) and
total (dashed ling eigenvalues could be seen in the inset.

1 (nm)2+(kL)?
§5nm( (n7T)2
)

(nm)2+(kL)?
(kL)?

This limit can be achieved in Eq.14) by using

lim _ _ sin[L(k,/2—nm/2L)]J/(k,/2—nm/2L)=2mwo(k,—nar/L).

Figure 1 also displays the eigenvalues of the diagonal energy

matrix in Eq.(14). A comparison of the two curves clearly

Enm(L—o>)=

X In (14

_Inthe above expressions, the second term in brackets coRjghlights the importance of end effects for PE chains of
tributes negligibly in the rodlike limit, because even thefinjte |ength.

smallest eigenvalues are considerably larger than unity in The electrostatic energy comprises one portion of the total

this regime. Neglecting this term thus yields
G(r)=No(L—r1) >, N f(n)e *nld=riL) (13
n=1

where the normalization prefactdv is used to compensate
for the small error caused by neglecting the second contrib
on G(r).

Ill. ENERGY EIGENVALUES

A. General results

energy of the semiflexible PE. The other contribution arises
from the elastic modulus, quantified by the “bare” persis-
tence lengti ;o and appearing in the energy as the first term
on the right-hand side of Eq1). The large eigenvalues of
the matrix T are dominated by the diagonal terms
(m-r)z(fpo/L) in, for instance, the right-hand side of H).
Thus, the effect of electrostatic interaction is more pro-

) i - ONtOY 5unced on the lower eigenvalues, while it is swamped b
tion. This prefactor can be found by enforcing normalization 9 ’ P y

semiflexible energetics at short length scales. In Fig. 2, the
eigenvalues of the total Hamiltonian are compared with the
bending eigenvalues. Only the first few eigenvalues are dis-
tinguishable from each other. The value rofor which the
electrostatic effects can be neglected depends on the strength
of electrostatic interactiorBL and the intrinsic persistent

To obtain the radial distribution function we must deter- length.

mine the spectrum of the effective Hamiltoni@in Since this

The general behavior of the larger eigenvalues associated

effective Hamiltonian incorporates the energy cost when thevith “pure” electrostatic energy, which grow logarithmically
PE deviates from a rodlike configuration, the spectrum of itswith indexn, is fundamentally different from those resulting

eigenvalues\, should be positive and a monotonically in-
creasing function of the inder. Note that it is the lowest

in “pure” elastic energy, which grow quadratically with in-
dex. In the case of a neutral polymer with an intrinsic per-

eigenvalues that exert the dominant influence on the radiaistence length that is comparable with the total length of

distribution function.

polymer, the series in Eq13) converges very rapidly, as

Figure 1 shows the eigenenergies of the electrostatic inroted in Ref[12]. When the chain is charged, and especially
teractionE at kL =10. To emphasize the importance of the when the persistence length is predominantly due to electro-

finite lengthL of the PE, we calculate the matri, ,, [using
Eqg. (6)] in the limit L—, and find

static effects, more terms in the series in EB) must be
preserved in order to obtain a stable answerG¢r). In our
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calculation, the matrix is truncated at a size much greater
than the number of terms needed to obtain an accurate an-
swer for the series in Eq13). There are two reasons for this. 3.
First, the greater the dimension of the truncated matrix, the
more accurate are the values of lower eigenvalues which 2
participate in the sum. Second, retaining more terms in the
product on the right-hand side of E{.2) helps us achieve a
higher accuracy in our result for the functiétn). In prac-
tice, we increased the dimension of the matrices until the
effect (on the end-to-end distribution functipof a further 0.
increase in the size of by a factor of 4 was less than a part 1 L L 1 L
in a thousand. 20 40 60 80 100
The truncation of the matrices above is also related to the index
short distance cutofb. The dimensions of these matrices
should not be larger than/b. This is because matrices cor-

responding to a cosine basis set for which the wave numb energy matrix as given by E@6). As indicated in the figure, the

is greater than M are influenced by features at length scales__~ o ; ) _
shorter thanb, and such features are inconsistent with th(?h orizontal axis is the index of the eigenvalue. The form(@ad) is

inh t N . We det the solid curve, passing through the filled circles, which indicate the
INherent coarse graining in our energy €xpression. We Aelte[5.4iion of the eigenvalues of the discrete version of the operator in

mine the trun_catlon of matrices by looking for Convergencequ(@_ To facilitate the visual comparison, the numerical eigenval-
of the numerical procedure, as noted above. We then chegjes have been “thinned out,” in that every third numerical eigen-

to see that the sizN of the basis set satisfiéé<L/b. Atno  yaue is shown.
point in our calculations was this inequality violated.

Asr—1, the dimension of the matrices must be very highwhere the functiom\ (p) is defined in Eq(B12). When the
in order to obtain reliable answers. It is possible to calculatelimensionless wave-vector-like quantiky, is large, the ei-
the integral in Eq(10) numerically without performing con- genvalues are essentially linear ikIThis is to be expected,
tour integration. This method is very time consuming, but itgiven the form of the unscreened Coulomb interaction, and
is more reliable because this way we reduce significantly thés, in fact, consistent with our numerical results.

FIG. 3. Comparison of the eigenvaluggk) as given by Eq.
épl4) with the numerical eigenvalues of the unscreened Coulomb

roundoff error caused by the sum in E§3). We used this We can now attempt a comparison between the expres-
approach for very large values @i. sions for the eigenfunctions in E¢L5), and eigenvalues in
Eqg. (16), and the numerically generated eigenfunctions and
B. Exact analytical eigenfunctions and eigenvalues of the eigenvalues of the unscreened energy operator whose matrix
unscreened Coulomb interaction energy elements in the cosine basis are given in &). The eigen-

) values are compared in Fig. 3, and a comparison for a low-
Although we are not able to produce exact, analytical SOy ing eigenvector is displayed in Fig. 4. As indicated by the
lutions to the eigenvalue equations of the quadratic weight i, res “the numerical correspondence is excellent. The qual-

Eq. (6), for arbitrary values of the inverse screening lengthiy, of the comparison serves as a validation of the numerical
K, it has proven possible to obtain the eigenfunctions andzculations carried out here.

eigenvalues of the unscreened version of the energy operator.
The results of the analytical investigation provide a check for

our numerics and provide insight into the qualitative behav- & ( S )
ior of eigenfunctions and eigenvalues of the energy operators k
controlling the conformational statistics of rodlike PE’s.

As it turns out, the investigation of the properties of the
operator in this special case is most conveniently carried out 5
in “real space,” that is, with arclengtb as the independent
variable. In this section, we will summarize the methods uti-
lized and the results obtained in this investigation. The de-
tails of the calculation are presented in Appendix B. The key -10
result is that the eigenfunctions of the unscreened Hamil-
tonian have the form

10

-15

) S FIG. 4. Comparison of the numerically determined eigenvector

§k(5):Sl/25|n( kIn5+ ¢(k)) (15  of the discrete version of the Coulomb energy kernel associated
with the sixth-lowest eigenvalugolid curve and of the eigenfunc-
tion generated by the formuld5) (dashed curve The value of the
parametek in that formula is adjusted to optimize the fit between
the two curves, with the use of a least-squares procedure. The actual
_ £+ik) (16) value ofk used here is 1.3. The oscillations in the solid curve are
2 ' the result of the cutoff in the cosine basis set.

and that the eigenvalues are given by

NK) = A
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G() to the neutral chain. Upon decreasing the screening length,
5 the monomer-monomer repulsion becomes more strongly
screened and the distribution function of the end-to-end dis-
4 tance peaks towards shorter extensions.
To construct a quantitative measure for the elasticity of
3 polyelectrolytes, we investigate to what degree and under
what conditions the radial distribution function of a polyelec-
2 trolyte can be reproduced by the distribution of a neutral
1 chain with an adjusted persistence length. To this end, we
attempt to collapse the distribution function of a polyelectro-
_ 7L lyte onto the distribution function of a wormlike chain with
1 an effective€,, and observe that the answer to the above

FIG. 5. (Color online only Comparison of distribution function qus\s/tl(_)n degen?stﬁn ﬂ;fe Vtaluisﬂaf,/l_”, ';]L’ a_lndﬂ]lc_t.h hai
of polyelectrolytes forkL=12, kL=6, andxL =3, respectively, € investigate the efiects ot overall charging ot the chain

from left to right. as quantified by the combinatigsi, of the screening length,
equal tox 1, of the length of the chair, and of the chain’s

It is possible to assess the importance of a small temiptrinsic stiffness, described i'n terms of Fhe ba}re pe.rsistence
representing the influence of “pure” bending energy, by!€Ndth, £po. We are able to identify regimes in which the
treating that term as a perturbation of the overall energy Of:_onfqrmatlonal statistics of a rodlike PE is effectively |nd_|s-
the polyelectrolyte chain. At first order in perturbation tinguishable from that of a neutral WLC, and we also find
theory, a straightforward calculation leads to the followinghat there are regions in parameter space in which the radial
result for the ratio of the pure bending energy contribution todistribution of a charged semlflexlble rod_llke_chaln cannot be
the eigenvalue to the zeroth-order energy resulting from a,(liehr;ri(r)]duced by the corresponding distribution of a neutral

unscreened Coulomb interaction: . . . .
Our conclusions are summarized in the four sections be-

= 0 T(1+4k2)/ATTK2/(1+ K2 low. Briefly, we find that sufficiently strong charging, a suf-
vending _ €pol JAILKH )] (17)  ficiently long screening length, sufficiently short overall
Ecoutomb 2¢gM (K)In(L/b) chain length, or sufficiently weak intrinsic stiffness can give

) o o rise to deviations between the conformational statistics of a
Note that in the limit of an infinitely long polyelectrolyte pg and that of a WLC.

chain, the unscreened Coulomb interaction always domi-
nates. The divergence in the denominatotLas~ is, how- A. Effect of electrostatic charging
ever, quite slow. As a practical matter, the bending energy

due to the intrinsic cost of introducing curvature into a Semi-wh-il;:meiﬁels diztrsiggt?gqm(l)?l ;;egolzn;;gt:;e tgar:]aar?c?gg Z?(Z((::?I n
flexible chain will eventually overcome the Coulomb energy ; or a polyelectroly . Y
that of a wormlike chain with an adjusted persistence length,

as a contribution to the conformation energy of the chain. In_ " S )

light of this fact, one can obtain results for the end-to—encg"’“.t'cuIarly.When the_electrosta_tlc interaction plays a pertur-

distribution of an unscreened chain in the presence of a ben ative role in the cha_ln energetics. 'I_'here_are also regimes in

ing energy. whlc_h the electr_osta_tlc interaction gives rise to a supstar)tlal
ortion of the stiffening energy, and in which the radial dis-

In this regard, it should be noted that in the absence of &., "~ .
: ' . : ribution of the PE is the same as that of a neutral WLC. For
bending energy, the expressietD) for the end-to-end dis- sufficiently strong electrostatic interaction, however, the

tribution of an unscreened polyelectrolyte chain is formally olyelectrolyte distribution begins to deviate from the worm-
divergent. This is because of the very slow increase in th yelectroly o gins 1o d
ike chain form. This is illustrated in Fig. 6, where the poly-

eigenvalue16) as a function ok. A full investigation of the T .
- I electrolyte distribution is compared with that of the best ef-
conformational statistics of the unscreened polyelectrolyt(?ective zvormlike chain descrigtion for the two cases of low

;ir:llénszar;r?scgsyet been carried out, and willin all probab|I|tyand high charging. It is clear that at strong enough charging,
' the electrostatic energy establishes the conformational statis-
tics.

IV. RADIAL DISTRIBUTION FUNCTION

OF POLYELECTROLYTES B. Effect of electrostatic screening

Using the eigenvalues of the effective Hamiltonian for the  The degree of screening of the electrostatic interaction
rodlike PE, we can calculate the radial distribution functionsimilarly affects the form of the end-to-end distribution. In
from Eq. (13). Figure 5 illustrates the effect of the screenedthe high-ionic-strength regime, it is possible to obtain a sat-
electrostatic interaction on the distribution function of a neu-isfactory match of the polyelectrolyte distribution with that
tral chain (dashed ling for three different values okL  of an effective wormlike chain. However, as screening de-
=12, kL=6, andkL=3. BL=100 for the three PE distri- creases, the polyelectrolyte distribution deviates significantly
butions. As manifested in the figure, the distribution functionfrom the wormlike chain form. Comparison of Figgapand
of the polyelectrolyte has shifted toward larger extensions illustrates the difference between high and low screening
and is peaked more sharply around the maximum comparefdr a given intrinsic stiffness and charging. We observe that
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G(r) Note: 2 superimposed curves! G(r) Note: 2 superimposed curves!
5 12
W
3 i
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FIG. 6. (Color online only (a) The distribution for a polyelec- FIG. 8. (Color online only (a) The distribution for a polyelec-

trolyte with € ,,=0.5, L =600, andxL =10, compared to that of trolyte with £ 5o/L.=0.0001, 8L =36 000, andcL =100, compared

a wormlike chain with¢,/L=1.3. Inset:(b) The distribution for a that of a wormlike chain withf ;/L =0.87 (two superimposed

polyelectrolyte with¢ ,o=0.5, BL =60, andxL =10, compared to curves. Inset: (b) The distribution for a polyelectrolyte with

that of a wormlike chain witt ,= 0.6 (two superimposed curves €po/L=0.01, BL =360, andxL =1, compared to that of a worm-
like chain with ¢,=0.565. The difference between the two sets of

as we increase screening, the two distributions collapse ofgrameters is only in the length of the chain.

top of each other. Our calculations verify that under physi-

ological conditions k=1 nm '), the distribution functions thickening that are associated with intermediate bloblike

for rodlike DNA segmentsl(=100 nm) as well as those of structured16] will not occur. In fact, we have observed that

stiffer actin filaments also collapse onto the end-to-end disa reduction in the effective value &f actually degrades the

tribution for neutral chains with an effective persistencequanty of the correspondence between the conformational

length given by Eq(18). statistics of a PE and those of the corresponding WLC. In
general, our calculations indicate that the difference between
C. Effect of finite length the radial distribution of the PE and the WLC is partly due to

In most of the studies of the elasticity of polyelectrolytesthe influence of end effects. A complete investigation of
that have been carried out to this point, the finite length ofthese effects is described in RgL7].
the polyelectrolyte and the corresponding end effects have
been assumed to be unimportant. We have reexamined this D. Effect of intrinsic stiffness

assumption by considering two sets of parameters that corre- . N _ _

Spond f denicalvlves o . o and ierent 11 20 [ERES L oW s oeh e
values for the contour length of the polyelectrolytes. As persistence leng _ thof

can be seen in Fig. 8, while the distribution for longer chains_, 0.01), the r_a<_j|al distribution funct|(_)n of a polyelectrolyte
can be satisfactorily collapsed onto that of a wormlike chain,drc]’es n((j)t exhlk;_||t( neer\]r-perfelct rE.atChl'ng with that of 3“ un-
the situation is completely different for shorter chains. This® atrghg V\./orm;].e cdalnh. nt; IS f‘mo‘;t unscreeneff. pastle,
highlights the importance of end effects in the elasticity ofMatching 1s achieved, when the chain becomes sufliciently
polyelectrolytes stiff. If €,0/L is increased to 35, whileL remains equal to

It is important to note that a resca”ng of the baCkbonel andBL:360, the I’adial diStI’ibution Of a PE will be indis-

length of the PE is not an acceptable stratagem for improvin 'nguish_able from the corresponding distribution of a neutral
the agreement between the PE radial distribution and that of/-C With a persistence lengtfy,=39L. The fact that such
a WLC. This is because the backbone length is essentiall large intrinsic persistence length is required to achieve this

fixed by the rodiike chain condition. The shortening andKind of matching of the two distribution highlights the im-
portance of electrostatic interactions in this case.

1'7§(r) E. Applicability of the WLC model: A general diagram

1.5 Nm’zsupem?osedm{\ The effects discussed above can be summarized in a gen-
1.25 eral diagram in the three-dimensional parameter space. This

1 diagram, shown in Fig. 9, illustrates the conditions under

which a WLC model provides an accurate description of the

0.75 conformational statistics of a short, rodlike PE. The lines
0.5 shown indicate the locations of the crossover regions that
0.25 separate the regime in which one can think of a short seg-
= v/L ment of a PE as a WLC with a modified persistence length

02 04 06 08 1 from the regime in which the statistics of a PE is fundamen-

FIG. 7. The distribution for a polyelectrolyte with,,=0.5,  tally distinct from that of a WLC.
BL=600, andxL =50, compared to that of a wormlike chain with As can be seen in Fig. 9, for a given value of the screen-
£,=0.56 (two superimposed curves ing parameter, charging up the PE will cause a crossover
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in which the statistics of a rodlike PE is the same as that of a WLC FIG. 10. (Color online only The intrinsic persistence length of
with a suitably modified persistence length from the regimes inthe charged chain i6,,/L=0.5, BL=45, andxL=2. The persis-
which the statistics of the two models are fundamentally differenttence length of the wormlike chain #&,/L=0.767.

The curves separating the two regimes correspond i o i
=0.58 for various values of ,,/L. These lines also indicate the
values ofggL in Eq. (19) at different values okL and€y,/L. No

€po/L=0.5, we find€,=0.56. The distribution function of
this polyelectrolyte collapses perfectly onto that of a worm-

curves were drawn outside of the range of rodlike behavior. For thidk€ chain with £,=0.56. It is important to note that the

reason, the curves fdf,,/L=0.1 and{,,/L=0.3 are truncated.

from WLC into non-WLC behavior. This crossover is, how-
ever, hampered by increased intrinsic stiffness.

V. ELECTROSTATIC PERSISTENCE LENGTH

In this section, we investigate the concept of the electro-
static persistence length. As in the preceding section, we will

find that there are regimes in which Odijk’s formylgq.
(18) below] for the effective persistence length of a P is

accurate, and that there are regimes in which it does not hol

As it turns out, there is a strong correlation between the;
accuracy of this formula and the correspondence between P
and neutral WLC conformational statistics. When the radial .

expression for o4 was derived under the assumption that
¢p0~L, the contour length of the chaih, is of the order of
its intrinsic persistence lengtfy,, and that the electrostatic
interaction has the limited effect of “perturbing” the worm-
like chain shape of the chaif6]. Our results confirm the
validity of Odijk-Skolnick-Fixman(OSH formula in the re-
gime in which it is expected to be correatl(>1).
For long chains, substantial charging is required in order
o enforce the rodlike limit. It is important to note that de-
spite the substantial charging of the chain, the ratio of the
length of the PE to the screening lengit,, must be suffi-
iently large. This requirement is essential in order to mini-
ize the strong influence of the end effects on conforma-
nal statistics of charged chains.
The important characteristic of this regime is tHaf
{. and thus electrostatic energy no longer plays a pertur-

distribution function of a PE is well reproduced by that of ap5tive role. However. we find that in this regime Odijk's
neutral WLC, the persistence length of the correspondingymula works perfectly well, provided the screening is

WLC is accurately predicted by Odijk’s formula. Conversely,

strong enough. For example, af,,/L=0.0001, AL

when the two distributions do not collapse on one another= 36000, andxL =100, we find ¢./L=0.87 which is a

the persistence length of the “best-fit” WLC is not predicted
by that formula.

near-perfect match withi oqj (see Fig. 8 The accuracy of
Odijk’s formula whent > ¢ 4 is not at all obvious, as OSF

We have seen in Sec. IV that one can collapse the distriformula was derived in the regime where electrostatic inter-

bution function of a polyelectrolyte onto the distribution

action plays a perturbative role.

function of a wormlike chain with an adjusted persistence e emphasize that the reason for the high quality of the
length whenever the Coulomb interaction is no more than gnatch with OSF in this regime is different from the reason
perturbation to the mechanical stiffness of the chain, or wheffor the corresponding result obtained by Khokhlov and Kh-
Debye screening is sufficiently strong. In these regimes, thgchaturian[18] for weakly charged flexible chains. In our
persistence length of the neutral chain follows Odijk's pre-case, the chain is stiff in all length scales; the possibility of
diction, in that,€,= €.+ €0, wheref,, is the effective per- renormalizing the length and/or charge is thus excluded in
sistence length of the charged chain, and the electrostatigyr formulation.
persistence lengthi, is given ag6] As noted in Sec. IV, increasing the electrostatic coupling
or screening length, one encounters a regime in which it is

pL?| 1 5 8 no longer possible to obtain near-perfect collapse of the
¢ odik= 75 | © “ K_L+ st —— polyelectrolyte distribution onto that of an effective worm-
(kL)= (xL) like chain. Figure 10 displays the polyelectrolyte end-to-end
3 8 distribution (solid curve along with the modified wormlike

+

chain distribution(dashed curvein a case in which it is
possible to obtain a good, but not perfect fit. The fit was
obtained by matching the location of the maxima of the two
distributions, and the electrostatic persistence length attrib-
uted to the polyelectrolyte distribution is that of the worm-

, (18

(kL)2 (kL)

which reduces tdf ogp= B/4k? for large xL [6,7]. For in-
stance, atBL=600 andxL =50, if we add{,5—=0.06 to
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] ] FIG. 12. (Color online only Comparison of our data, suitably
FIG. 11_. (Color_ online only Comparlsor_l_ O,f our reSU_“S for the rescaled, to the expression in Eg9) for the form of the correction
electrostatic persistence length with Odijk’s finite size formula;g odijk’s formula for the electrostatic persistence length. The

(solid ling) at kL =2 with €,,/L=0.5 (filled circles and €y, /L points correspond to our rescaled plotsf@fL versuspL at L
=0.01 (hollow circles. The inset is forkL =17 and€,/L=0.5. =6.,8,10,12.

like chain associated with the dashed curve. The PE diStriof {e onk is Correcﬂy given by the OSF formula. However,

bution shown in the figure matches the result of computepyr results indicate that in certain regimes the electrostatic
simulation of a rodlike PE[lg] In this case the ratio of persistence |engtﬁe depends 0r€p0! and is smaller than is
electrostatic persistence length extracted from the diStribUpredicted by the OSF formula. Figure 11 shows that the elec-
tion function to Odijk's persistence length i6e/€ogijx  trostatic persistence length of a rodlike polyelectrolyte,
=0.58. As noted at the beginning of this section, the MOre, /L, depends off ,o/L. This dependence is not present in
the two distributions are different from each other, the morepdijk’s formula.
the effective persistence length of the polyelectrolyte devi- oy general observation of the curvesffversusgL is
ates from the Odijk’s predjction. I_:or examp_le, t_he p.ersis-that they asymptote to a power law of the fofigec(BL)%,
tence length of the wormlike chain shown in FighBis  \yhere the exponent(xL) is less than 1. This behavior has
€,/L=0.565, while the effective persistence length of thepeen predicted by Barrat and Joanny with an expoment
polyelectrolyte according to Odijk i6po+ € ogig=4-52. The = 1/2 in the limit BL— o0 [8]. We find, however, that the
two distributions differ significantly and the ratio is asymptotic limit is approached much more slowly than it is
el ogip=0.12. o ) predicted by the Barrat-Joanny crossover formula. The sec-
Our general observation is that the ratio &f extracted  tion below describes our attempt to systematize the relation-

from the effective wormlike chain distribution to Odijk's per- ship of the effective persistence length to Odijk’s prediction.
sistence length correlates with the quality of the fit of an

effective wormlike chain end-to-end distribution to that of a VI. UNIVERSAL BEHAVIOR
polyelectrolyte. When this ratio is equal to 1, the polyelec-
trolyte can be completely described in terms of a wormlike In search of a possible universal pattern which might re-
chain. As this ratio decreases, the deviation becomes motate € ,o/L, BL, and«L to €., we have rescaled our graphs
pronounced. Figure 9 displays a diagram, which delineatefor different values of the parameters. To this end, we choose
the quality of the fit. The line that is used in the figure to a value ofg called 3, such thaif ¢ /€ o4j=0.58, and rescale
separate the two regimes correspond$ ¢ oqj=0.58. As  the paramete with it, where the value of 0.58 is com-
indicated in this figuréand described in Sec. IV)Efor fixed  pletely arbitrary. We have followed this procedure to rescale
xL, when BL is below a certain value the polyelectrolyte our graphs for different values ofL, keeping€ /L con-
behaves like a wormlike chain, while for largBt. the two  stant. Figure 12 contains these rescaled graphs «dor
distributions start to differ significantly. This crossover scale=6,8,10,12, which collapse satisfactorily on top of each
is sensitive to the intrinsic flexibility of the PE, as shown in other. It is important to note that when we choose any other
Fig. 9. ratio of € /€ ogi to rescale our graphs, we obtain the same
There is a substantial difference between the electrostatigniversal behavior among our curves. The solid line in Fig.
persistence length of a rodlike polyelectrolyte and Odijk's12 corresponds to the following crossover or interpolation
prediction as we increase the electrostatics strepfthAs  formula for €,:
illustrated in Fig. 11, the deviation dfe/L from € /L,

with increasingBL is more pronounced at lower values of (.= € odi (19
kL. At kL=17, this deviation becomes evident whgh ¢ 1+c(BlB)

~1000. However, akL =2, the deviation is evident already

when BL ~30. plotted with the exponent=0.4. In the above equatior,

Areview of the current literature on elasticity of polyelec- =0.724 is constant which ensures the ratid pf{ o for a
trolytes reveals that there is no simple theory for computinggiven value ofg3,.
€ with arbitrary intrinsic stiffness. It is generally believed  As exemplified in Fig. 12, this formula provides a remark-
that as long as a polyelectrolyte chain is stiff, the dependencable fit to our data. To calculate the exponantwe have
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FIG. 13. Demonstration of the universal scaling behavior for
£.. The points correspond to our rescaled plot€ ofL versusBL 0.4 0.6 0.8 1
at kL=6,8,10,12. The equation of the straight lineyis-0.006 ) R o
+0.40%K. FIG. 14. (Color online only The taller distribution(solid line)

belongs to a polyelectrolyte atL =17, £,,=0.5, andSL = 1000.
The shorter distributioridashed lingis adjusted so that its second

attempted to fit our curves of IMfiggix/¢e—1) versus moment is the same as that of the polyelectrolyte distribution.

In(B/B,) to a straight line. As shown in Fig. 13, all our data
are fitted to a straight line with slope approximately equal todistribution functions are distinguishable from each other. In
0.4. Similar curves have been generated for other, smallegeneral, we observe that the maximum of the wormlike chain
values of¢,o/L. The behavior of these other curves is thedistribution is shifted toward larger extension when we

same as the one plotted in Fig. 12. match (r?) of the two distributions as exemplified in the
The quantityB, is an increasing function of ,, and . figure.
We have been able to obtain the valuegffrom our data. Similar results are observed when we match the first mo-

The crossover discussed in the preceding section occuf@ent of distribution of a polyelectrolyte with that of a worm-
when B= By, which corresponds td=0.5& qgjx in EQ.  like chain with an adjusted persistence length. In Fig. 15, the
(19). Hence, the curves in Fig. 9 indicate the valueg3gk  distribution function of a polyelectrolyte along with two dis-
for different values okL and{,/L. The dependence ¢f,  tribution functions for effective wormlike chains is pre-
on the parameters,,, «, andL seems to be in general quite sented. The dashed line and polyelectrolyte share the same
complicated. For€,ox>1, we seem to find that3, first moment. As illustrated in the figure, the two distribu-
~L2K4€p0g(KL), where g is a polynomial function. For tions differ significantly.

€p0x<1, however, the leading dependencexoseems to be We have compared the electrostatic persistence length
a much stronger power law. We are still investigating thegiven in Eq.(18) with our results obtained by matchimgz>
dependence 0B, on the parameters in all the different re- of a PE distribution to that of a WLC distribution. Figure 16

gimes[20]. shows that forkL=17, our data begin to deviate from
Odijk’s finite size formula wherBL ~ 1200.
VII. FIRST AND SECOND MOMENTS OF THE It is important to note that when we match the maximum
DISTRIBUTION of distributions to extract an effective persistence length, the

deviation from Odijk’s prediction begins gBL~400 for

Much theoretical work on electrostatic persistence length | — 47 (the inset in Fig. 1L This is the point when the two
is based on the calculation f) or (r?) of a polyelectrolyte.

Odijk uses the second moment to test the validity of OSF G()
when€.> €4 [6]. It is thus crucial to learn to what extent 50
the conformational statistics of polyelectrolytes are similar to

those of wormlike chains when they share the sdmeor 40

(r?). It is not obvious that the matching of first or second
moments of the end-to-end distribution will yield the match-
ing of the higher moments of the distribution as well.

We extract an “effective” persistence length by matching
the first or second moments of the end-to-end distance of a
polyelectrolyte distribution with that of an effective worm-
like chain in order to compare our results with other existing :
theories. Figure 14 contains the end-to-end distribution func- 0.85 0.9 0.95

tion for a screened pOIVeIe_Ctro'yte _WiFhL_:]-?' €pQ/L FIG. 15. (Color online only The thin solid line is the plot of
=0.5, andBL =1000 along with the distribution function of 1) for a polyelectrolyte withBL=600, xL=0, and CpolL

an uncharged wormlike chain witfy,/L=1.22. The shorter =05 The thick solid line with¢ ,o/L=3.1 belongs to a WLC
distribution is adjusted so that its second moment is the sam@stribution for which its maximum is matched to that of the PE
as that of the polyelectrolyte distribution. It is noteworthy distribution. The dashed plot is for a neutral chain with, /L

that the persistence length of the uncharged wormlike chair-4.86. The dashed distribution and polyelectrolyte have the same
agrees perfectly well with Odijk’s prediction, while the two first moment.

30

20

10
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I which the charging of the chain is sufficiently strong such
1.2 that electrostatic effects dominate purely mechanical energet-
ics as long as Debye screening of electrostatic interactions is
sufficiently strong.

0.8 In fact, we find that there is a strong correlation between
correspondence of the distributions of charged and un-
charged chains and the validity of Odijk’s formula for the
0.4 effective persistence length. When the distributions can be
collapsed onto each other, the formula proves to be accurate,
while lack of correspondence of the two distributions is ac-
BL companied by inaccuracy of the Odijk result for the effective
persistence length. Our results indicate that the difference

FIG. 16. (Color online only Comparison of our results for the between the radial distribution of the PE and the WLC can
electrostatic persistence length with Odjik’s finite size fornfilg.  be attributed, at least in part, to the influence of end effects.
(18)] (solid line) at kL =17. Our numerical results are based on then fact, we believe that the behavior of the persistence length
matching of the second moment of distributions. is substantially controlled by end effects. One way of under-

standing this is in terms of Odijk’s derivation of the expres-
distributions cease to closely resemble each other. Howevesion (18) for the electrostatic persistence lend®)]. This
if we use the matching of the first or second moment toderivation is based on a calculation of the energy of a bent
calculate the effective persistence length, the two diStI’ibuSegment of a charged rod. A key assumption in this deriva-
tions would clearly be distinguishable from each other welltion is that the segment takes the form of an arc of a circle.
within the regime in which Odijk’s formula for the persis- End effects are readily associated with the difference be-
tence length remained accurate. tween the shape of a real bent rod and the circular arc as-

This points to the fact that replacing a PE chain by asumed in Odijk’'s derivation. An exploration of these effects
WLC, when they share the sange?) or (r), is not well  in this context is described in RefL7].
justified in all regimes and that one should use care in the Another important finding is that an effective persistence
utilization of the notion of an electrostatic persistence lengthength, obtained by locating the maximum of the distribu-

1

0.6

0.2

250 500 750 1000 1250 1500

based on matching of first or second moments. tion, can be described in terms of a scaling formula, (E6).
This formula relates the actual persistence length to the
VIIl. CONCLUSION Odijk predictions. The formula is “universal,” in that it has a

general form that is independent of the parameters utilized,

The difficulty in producing a complete characterization of gng it incorporates a power law that does not appear to be
the mechanical properties of a charged, semiflexible chainticipated in the Hamiltonian governing the system, nor
arises from the existence of a number of length scales in thgjpes it arise from any simple dimensional analysis. At this
System. In particular, it is far from clear that the notion of apoint, we have no explanation for either the universal form
persistence length provides an adequate description of thg the power law.
mechanical and thermal characteristics of such a chain. In A5 noted above, the effect of counterion condensation has
light of this, the end-to-end distribution function provides anpeen ignored throughout the above work. It has been shown
interesting alternative. Given that the distribution is a func-that counterion condensation modifies the bending rigidity of
tion, rather than a single number, it represents considerably semiflexible chairi10,21-23 and may result in the col-
more information about the charged chain. lapse of the PE chaifiL0]. We have performed a calculation

One important application of this distribution is in the of the distribution function taking into account the attractive
assessment of the utility of the notion of a persistence lengthpteraction due to counterion fluctuations and observed the
in that it is possible to compare the distribution obtainedsignature of collapse. In general, one is able to observe the
experimentally, via simulations, or as the result of explicitcojlapse of a charged chain for any strong enough attractive
calculations, with the corresponding distribution of a neutralinteraction which is in function of the distance between

have been able to determine the extent to which the end-to-

end charged chain can be collapsed onto the end-to-end dis-
tribution of a neutral wormlike chain with an adjusted per-
sistence length. Among the regimes in which this
correspondence is achieved are those in which electrostatic The authors would like to acknowledge helpful discus-
effects play a perturbative role. In addition to collapse of thesions with W.M. Gelbart, M. Kardar, R.R. Netz, I. Borukhov,
two distributions in these regimes, we also find that the elecH. Diamant, K.-K. Loh, V. Oganesyan, and G. Zocchi. This
trostatic persistence length is given by the formulas of Odijkresearch was supported by the National Science Foundation
and OSF. This result is consistent with the assumptions uninder Grant No. CHE99-88651. We are grateful to Dr. Ita-
derlying those formulas. We also observe collapse of the dismar Borukhov for suggesting key elements to systematize
tributions and can verify the validity of the Odijk and OSF the relationship of the effective persistence length to Odijk’s
results for the effective persistence length in regimes irprediction.
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APPENDIX A: EXPANSION OF THE COULOMB L
INTERACTION K(s,s")=d(s—s") fo L(s,s")ds'—L(s,s"), (B4

In this appendix, the expansion of the Coulomb self-
interaction for a charged chain that is slightly deformedand
about the rodlike configuration is derived. Using Fourier rep-

resentation of the screened Coulomb interaction, we find V (Sb Sa)
L(s,s") dsa , (B5)
el (9)-r(s")]
f f |r(s)—r(s ) ands. (- is the greatetsmalley of sands’. If the charges
on the polyelectrolyte interact via the unscreened Coulomb
a3k 4w potential, then the interactions leading to the kerfigd,s’)
:f (277)3 T 2 f dsf ds’explik-[r(s)—r(s")]} are straightforward, and we find
1 1 1 1 1
d*k 4w L(s;s')=5 i . (B6)
zJ J dsJ ds’exp ik, - J dua(u) 2[s.—s< L s. L-sc
27'r)3
Note that the kernef(s,s’) is equal to zero whenever either

kg (s 2. / one of the arguments is equal to O lar
j dua(u)™+iky(s S)] The kernelC is neither local nor is it translationally in-
variant. However, if we are interested in what happens in the
d*k 4w (L b k(s =) vicinity of s=0, we can simplify£ and, as a consequence,
f (2m)3 k2+K2f0 dsf ds'e™ K. When boths ands’ are much smaller thah, we can
replacel as given by Eq(B6) by

1 s’
—(kyf dua(u)) 1
2 s La(s8)=73

X1 1— 1 1

S>—Sc S~ .

(B7)

ik, (s
- —Zfs dua(u)2+0(a3)|.
2 Js

(A1) The kernelk that results from this newl via Eq.(B4) is still
nonlocal and is not translationally invariant. However, it is
possible to obtain, by inspection, its eigenfunctions and their

APPENDIX B: GENERAL FORM OF THE ENERGY associated eigenva|ues_
ASSOCIATED WITH DISTORTIONS OF A RODLIKE We assume that the minimum spacing between adjacent
POLYELECTROLYTE STIFFENED ENTIRELY chargesp, is small, and we assume that we can retain those
BY UNSCREENED COULOMB INTERACTIONS terms that are leading order in ratioskofo other lengths in

the system. Making use of these assumptions, we are able to
é)btaln by inspection, results for the eigenfunctions and ei-
genvalues of the energy operator

We start by noting that the convolution of the energy ker-
nel in Eq.(B7) with the functions® is equal to

Suppose that the tangent vectds) is as given by Eg.
(4). Suppose, also, that the interaction energy of the rodlik
polyelectrolyte is given by

:8 L L
= —J’ dsJ’ ds'V(r(s)—r(s")). (B1)
2Jo Jo S 1 ©
Sp{Zlna-l-pJ ap_lln(l—a)da—pf aP ln(a—1)da
Making use of Eq(4) and the relationship 0 !
! + ! (B8)
s - 4 - .
r(s)=f t(s;)ds;, (B2) p+1 p
° A(P)
and expanding to the resulting expression for the ené&rgy 4
second order in the deviatioa(s), from a straight line in
the z direction, we find that the energy is given by 2
L L
=E[f dsf ds'V(s—s') - + F
2Jo Jo
-2
L L
+f dsf ds'K(s,s")a(s)-a(s’) |, (B3) 4
0 0 |
where FIG. 17. The functiomA(p) as a function of reap.
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FIG. 18. The functior\ (k) = A(—1/2+ik), for k>0.

The assumption underlying the calculations leading to ex- FIG. 19. The values of the parameter
pression(B8) is that the integrand is fundamentally conver-

gent. That is, we ignore the possibility that the integrand MK)=A(—1/2+ik) (B14)
yields nonintegrable divergences anywhere in the region of

integration. We now make use of the following relations:

is given by
1
f aP lUn(1-—a)da=—y—y(p+1), (B9)
0 A(K)=~0.227 411 2 In[ 1+ 0.92%2]. (B15)
f aP~Hn(a—1)da=y+¢(—p), (B10) , , : :
1 The spacing of the eigenvalues is determined by the allowed

values of the parametérin Eq. (B14). If we assume that the
where y(x), the digamma function, is the logarithmic de- eigenfunctions pass through zero at some large valseaf
rivative of the gamma function, that they have a zero slope there, then it is straightforward to
show that the lowest eigenvalues will be associated with
W(x)= L il’(x). (B11) equa[ly spacedt’s. .Figure 3 contains_ a comparison between
I'(x) dx the eigenvalues given by E¢B14) with equally spaced’s

) o ) ] ] . and the numerically calculated eigenvalues of the interaction
This means that the “eigenvalue” associated with the eigengperator with matrix elements in the cosine basis set as

function sP is given by shown in Eq.(6).
As an additional check on the validity of the results pre-
1 1 sented here, we compare the eigenfunctions in(B3) to
A(p)=2y+p(1+p)+y(—p)+ ¥l p_ 1. the eigenvectors of matrix in E46). The eigenvectors are
(812  plotted in real space. We find that for low eigenvalues, the
expressions in EqB13) provide an excellent match to the
Figure 17 displays the functioh(p) as a function of the real results of numerical calculations. Figure 4 displays a com-
argumentp. Note that the function is symmetric abopt  parison between an eigenfunction as given by (B4.3) and
=1/2. It can be readily shown that the functidr{p) is real  the numerically determined eigenvector associated with the
if p=—1/2=ik, with k real. The proper eigenfunctions and sixth-lowest eigenvalue of the discrete version of the kernel.
eigenvalues are associated with just such valugs of fact,  The value ofk in the formula for the eigenfunction was ad-
we can choose for eigenfunctions of the operator justed with the use of a least-squares procedure. The eigen-
functions have zero slope at the boundary of the region as-
sociated with the smallest value ®fThe quantitys does not
range over the entire interval, from 0 to 1, because the ana-
Iytic eigenfunctions generated here are expected to be accu-
If we then require that the derivative of the eigenfunctionrate only in the regims<L, whereL has been set equal to
&(s) is zero at the boundary s€b), then ¢(k) 1 in the case at hand.
=arctan X. It can be shown that the integrations leading to The least-squares fitting of the analytical eigenfunctions
the eigenvalue are all convergent, and the eigenvalue has th@ numerical eigenvectors leads to a set of values for the
form A(—1/2+ik). A plot of this eigenvalue as a function parameterk. Figure 19 displays the values & plotted
of the parametek is displayed in Fig. 18. This eigenvalue is against the index of the eigenvalues. As indicated by the
an even function ok. As it turns out, an excellent numerical straight line drawn through them, ttés are approximately
approximation to equally spaced.

§k(s)=sl’zsin( k|n§+ ¢>(k)>. (B13)
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