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Probing polyelectrolyte elasticity using radial distribution function
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We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a
single polyelectrolyte chain in the rodlike limit. The extent to which the radial distribution function of a
polyelectrolyte is reproduced by that of a wormlike chain with an adjusted persistence length is investigated.
Strong evidence is found for a universal scaling formula connecting the effective persistence length of a
polyelectrolyte with its linear charge density and the Debye screening of its self-interaction. An alternative
definition of the electrostatic persistence length is proposed based on matching of the maximum of the distri-
bution with that of an effective wormlike chain, as opposed to the traditional matching of the first or the second
moments of the distributions. It is shown that this definition provides a more accurate probe of the affinity of
the distribution to that of the wormlike chains, as compared to the traditional definition. It is also found that the
length of a polyelectrolyte segment can act as a crucial parameter in determining its elastic properties.
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I. INTRODUCTION AND SUMMARY

The close connection between the elasticity of rodlike
toskeletal polymers and the mechanical properties of c
has been extensively documented@1–3#. For example, actin
filaments are known to play a crucial role in the recovery
eukaryotic cell shape in the face of the stresses impose
cell movement, growth, and division. Furthermore, the st
ness of DNA constrains and controls both its storage in
cell nucleus and access to it by the proteins and enzymes
are central to its role in biological processes. However, th
is, as yet, no complete, quantitative understanding of the
lationship between the elastic attributes of these polym
and the influences that control them. Such an understan
is crucial to the development of a general description of
functionality of polymers.

An additional spur to an increased focus on the conn
tion between first-principles energetics and the elastic c
acteristics of polyelectrolytes is the fact that experimen
techniques have been developed that allow for the imag
of single filaments in solution@4#. This means that it is now
possible to test models and theoretical predictions at the l
of a single-chain polymer.

The key challenge in this area is to produce a theoret
analysis that connects the electrostatic interactions and l
energetics of a polyelectrolyte with its overall mechani
properties. In the case of neutral chain polymers, the wo
like chain~WLC! model of Kratky and Porod@5# provides a
powerful and convenient characterization of flexibilit
through thepersistence length, which is the decay length o
the tangent-tangent correlation function of a stiff, inexte
sible polymer chain. The lack of a similarly inclusive an
readily implemented model for polyelectrolytes has been
dressed through the application of the WLC model to po
electrolytes, with the introduction of an effective, ‘‘electr
static,’’ persistence length@6,7#. The shortcomings of this
1063-651X/2003/67~2!/021803~14!/$20.00 67 0218
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notion, which replaces the many length scales in a polye
troyte by a single effective persistence length, have b
commented in Refs.@6,8,9#. Additionally, codifying electro-
static interactions in terms of single length ignores the p
sibility of chain collapse resulting from fluctuation-induce
self-attraction@10#.

If a suitably modified WLC model did, indeed, provide
working model for the calculation of the conformation
properties of polyelectrolytes, then a number of power
results could be brought to bear on the study of this syst
Among the more useful of these is the recently derived e
to-end distribution@11# of short segments of an inextensib
polymer@12#. The distribution, which is expected to apply
segments whose backbone length is less than the persis
length of the polymer—the rodlike limit—was shown to b
accurate both in that limit and somewhat outside it. The d
tribution possesses the virtue that it can, in principle, be
lized in the analysis of currently feasible experiments
polymers in the rodlike limit@13#. One can, then, determin
whether or not the WLC model accurately reflects the pr
erties of the polymer segments in question. If the model
been shown to apply, then the fit of the distribution to t
data directly yields the persistence length and, hence,
elastic modulus of the polymer.

An additional advantage of the end-to-end distributi
function is that it is a function, rather than a number. That
the end-to-end distribution function contains, at least in pr
ciple, an infinitely greater amount of information than can
encoded in a single quantity. The distribution thus represe
a more comprehensive characterization of the elastic
thermal characteristics of a charged semiflexible chain.
this sense, it provides one with an opportunity to disentan
the actions of electrostatic and mechanical interactions
they affect the conformational properties of a fluctuati
polyelectrolyte~PE!.

In this paper, we calculate the end-to-end distribution o
©2003 The American Physical Society03-1
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charged, inextensible, semiflexible chain. This distribution
then utilized to address two central questions relating to
conformational statistics of a polyelectrolyte. Those qu
tions are as follows:

~1! Under what circumstances is the end-to-end distri
tion of the PE’s reproduced by the end-to-end distribution
a WLC with an adjusted persistence length?

~2! Under what circumstances will the effective pers
tence length of a PE be as predicted by existing formula

As will be shown below, we are able to identify regim
associated with strong electrostatic coupling, weak scre
ing, or high intrinsic flexibility of the PE’s, in which the
end-to-end distribution deviates from that of a WLC. We a
also able to identify the regions in which this approximati
is accurate. The concept of electrostatic persistence leng
examined, and an alternative definition of this importa
length scale is suggested. Our alternatively defined elec
static persistence length is compared with a well-known
widely utilized formula for the persistence length of a sti
charged rod@6#. This electrostatic persistence length is fou
to obey a universal crossover scaling law.

The rest of the paper is organized as follows: Sec. II
scribes the model that we use to study the elasticity of s
PE’s. This model is a straighforward extension of the Kratk
Porod model of a WLC. The energy of this system cons
of the mechanical energy required to induce a local curva
in the chain and the screened electrostatic repulsion betw
the charges on the chain, which are assumed to be unifo
distributed along it, in the form of a constant linear char
density. The distribution function of the end-to-end distan
of this chain is then introduced and given a precise ma
ematical form. An expression for this distribution is derive
under the assumption that the chain does not undergo
much of a distortion from its minimum-energy configuratio
as a straight line. That expression, which is based on
eigenvalues of the Hamiltonian of the PE’s, forms the ba
of all the results reported in this paper. Details of the exp
sion of the electrostatic self-interaction about the rodl
configuration are presented in Appendix A. Section III
devoted to a discussion on the structure of those energy
genvalues. The influence of the electrostatic interact
which is most pronounced at on the lower eigenvalues
discussed. Also discussed are the methods and criteria
lized to guarantee the numerical reliability of the end-to-e
distribution. Section III B briefly summarizes exact resu
that have been obtained for the eigenvalues of the Ha
tonian consisting entirely of the unscreened Coulomb in
action. These results are relevant to the conformational
tistics of a chain stiffened entirely by such interactions.
more detailed description of the way in which the resu
were obtained is relegated to Appendix B. Section IV p
sents the results for the distribution function in various si
ations. Particular attention is paid to the question of the
lationship between the distribution function calculated h
and the corresponding end-to-end distribution function o
neutral rodlike semiflexible polymer. Section V scrutiniz
the concept of electrostatic persistence length. The poin
comparison is a general formula for the persistence len
introduced by Odijk. We discuss the ways in which a pers
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tence length can be extracted from the end-to-end distr
tion, and we justify the method of choice in this investig
tion, which is based on the location of the maximum of t
end-to-end distribution. We find that our results are cons
tent with Odijk’s formula when the distribution we calcula
can be made to collapse on the end-to-end distribution o
uncharged WLC. Conversely, our results do not agree w
the Odijk formula when the distribution is inconsistent wi
that of a WLC with adjusted persistence length. We find t
the effective persistence length of the end-to-end distribu
function can be described by a ‘‘universal’’ formula, inco
porating a scaling form and an unexpected power law. T
formula holds whether or not the effective persistence len
is described by Odijk’s expression. Section VI focuses
this behavior of the effective persistence length. Section
discusses issues related to the moments of the distribu
and the use of those moments to define a persistence le
Section VIII concludes the paper.

II. MODEL ELASTICITY FOR POLYELECTROLYTES

Because of the inextensibility of the polyelectrolytes u
der consideration@12,14#, we adopt Kratky and Porod worm
like chain model@5# to describe the bending energy of th
chain. In this model, polymers are represented by a sp
curve r (s) as a function of the arclength parameters. The
total energy of the chain, which is the sum of the intrins
elasticity and the electrostatic energy, can be written as

H
kBT

5
,p0

2 E
0

L

dsS dt~s!

ds D 2

1
b

2E0

L

dsds8
e2kur (s)2r (s8)u

ur ~s!2r ~s8!u
,

~1!

where t is the unit tangent vector. We do not take into a
count the fluctuations in the charges localized to the ch
and in the counterion system that can give rise to attrac
interactions leading to chain collapse@10#. The above equa-
tion contains several different length scales:~1! the average
separation between neighboring chargesb, ~2! the Debye
screening length k21, ~3! the Bjerrum length ,B
5e2/ekBT, the quantitye being the dielectric constant of th
ion-free solvent,~4! the intrinsic persistence length,p0, and
~5! the total chain length,L. Two of these length scales
namely,B andb, always appear together in the form of th
ratio ,B /b2, which is denoted byb in Eq. ~1!.

We can thus construct three independent dimension
ratios:bL ~a measure of the strength of the electrostatic
teractions!, kL ~a measure of the degree of screening!, and
,p0 /L ~a measure of the intrinsic flexibility!. A comprehen-
sive exploration of parameter space entails the examina
of the effects associated with a change in the electrost
coupling and the degree of screening. We focus on inex
sible chains that are substantially stiffened by their bend
energy (,p0;L) and for which the bending energy alone
insufficient to keep the chain nearly rodlike (,p0!L). The
chain is assumed to be sufficiently stiff such that the
cluded volume does not play a role.
3-2
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The end-to-end distribution function is defined as follow

G~r !5^d~r2R!&, ~2!

where R5r (L)2r (0). The average in Eq.~2! is over an
ensemble of PE chains. The functionG(r ) is, then, the prob-
ability that a given chain in the ensemble will have an en
to-end distance equal tor . We make use of the procedur
that Wilhelm and Frey have implemented to calculate
end-to-end distribution function for inextensible neut
polymers@12#. In order to calculateG(r ) in the vicinity of
the rodlike limit, we restrict our consideration to regions
which the combination of intrinsic stiffness and repulsi
strength of the Coulomb interaction keeps the chains in t
rodlike limit @15#. Using the integral representation of thed
function, we can writeG(r ) as

G~r !5
1

ZE d3m

~2p!3E Dt~s!expH imr2 imE
0

L

dst~s!

2
,p0

2 E
0

L

dsS dt~s!

ds D 2

1
b

2E0

L

dsds8
e2kur (s)2r (s8)u

ur ~s!2r ~s8!u J ,

~3!

in which Z5*Dt(s)exp(2H/kBT). We then parametrize th
unit tangent field as

t~s!5
„ax~s!,ay~s!,1…

A11ax
2~s!1ay

2~s!
, ~4!

in which the constraint of inextensibility is manifestly sati
fied.

Making use of the relationr (s)2r (s8)5*s
s8dut(u), we

expand the screened Coulomb interaction about the rod
configuration to quadratic order ina(s)5„ax(s),ay(s)… ~see
Appendix A for details!. We then use the series expansi
a(s)5A2(n50

` Ancos(nps/L) as appropriate for the open-en
boundary condition, and assume for simplicity thatr is, on
average, oriented along thez-axis so that A0

5(1/A2)*0
Ldsa(s)50. Substituting Eq.~A1! in Eq. ~3!, we

obtain

G~r !5
1

ZE d3m

~2p!3E )
n51

`

d2AnexpH imr2 imzL

1
imzL

2 (
n51

`

An
22

,p0

2L (
n51

`

~np!2An
2

2
bL

2 (
n,m51

`

An•AmEnmJ , ~5!

where
02180
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p2nmE2`

` dkz

2p
~kz

21k2!lnF ~p/b!21k21kz
2

k21kz
2 G

3H cosFp2 ~n2m!GF sinS kzL

2 D sinS kzL

2
2

p~n2m!

2 D
kz@kz2~n2m!p/L#

2

sinS kzL

2
2

pn

2 D sinS kzL

2
2

pm

2 D
~kz2np/L !~kz2mp/L !

G2cosFp2 ~n1m!G

3F sinS kzL

2 D sinS kzL

2
2

p~n1m!

2 D
kz@kz2~n1m!p/L#

2

sinS kzL

2
1

pn

2 D sinS kzL

2
2

pm

2 D
~kz1np/L !~kz2mp/L !

G J
1

1

LE2`

` dkz

2p
~kz

21k2!lnF ~p/b!21k21kz
2

k21kz
2 G

3H d2

dkz
2
F sin2S kzL

2 D
kz

2
G J ~6!

are the elements of the electrostatic energy matrix in
cosine basis set, withb, the average separation betwe
neighboring charges, serving as the short distance cutoff

Performing the functional integral overAn , we then ob-
tain

G~r !5
1

L
d~r x!d~r y!E

2`

` dv

2p
eiv(12r z /L)

det@T#

det@T1 ivI #
,

~7!

where T5(np)2(,p0 /L)I1bLE, I is the identity matrix,
andv52mzL. Note that the distribution function in Eq.~7!
is manifestly normalized to unity, i.e.,*d3rG(r )51. We can
then integrate over the orientational degrees of freedom
find the radial distribution function,

G~r !5r 2E
0

p

sinuduE
0

2p

dfG~r !, ~8!

that is, subject to the normalization*0
`drG(r )51. Using r

5(r sinu cosf,r sinu sinf,r cosu), we obtain

G~r !5
1

LE2`

` dv

2p
@eiv(12r /L)1eiv(11r /L)#

det@T#

det@T1 ivI #
,

~9!

which can be rewritten as

G~r !5
1

LE2`

` dv

2p
@eiv(12r /L)1eiv(11r /L)# )

n51

` S ln

ln1 iv D ,

~10!
3-3
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in terms of the eigenvaluesln of the matrix T. Contour
integration then yields

G~r !5 (
n51

`

lnf ~n!@e2ln(12r /L)u~L2r !1e2ln(11r /L)#,

~11!

with

f ~n!5)
iÞn

S l i

ln2l i
D . ~12!

In the above expressions, the second term in brackets
tributes negligibly in the rodlike limit, because even t
smallest eigenvalues are considerably larger than unity
this regime. Neglecting this term thus yields

G~r !5Nu~L2r ! (
n51

`

lnf ~n!e2ln(12r /L), ~13!

where the normalization prefactorN is used to compensat
for the small error caused by neglecting the second contr
tion. This prefactor can be found by enforcing normalizati
on G(r ).

III. ENERGY EIGENVALUES

A. General results

To obtain the radial distribution function we must dete
mine the spectrum of the effective HamiltonianT. Since this
effective Hamiltonian incorporates the energy cost when
PE deviates from a rodlike configuration, the spectrum of
eigenvaluesln should be positive and a monotonically in
creasing function of the indexn. Note that it is the lowest
eigenvalues that exert the dominant influence on the ra
distribution function.

Figure 1 shows the eigenenergies of the electrostatic
teractionE at kL510. To emphasize the importance of th
finite lengthL of the PE, we calculate the matrixEnm @using
Eq. ~6!# in the limit L→`, and find

FIG. 1. Eigenvalues of electrostatic energy matrix calcula
from Eq. ~6!, at L/b51000 andkL510 ~dashed curve!, compared
to the eigenvalues calculated in the infinite length limit in Eq.~14!
~solid curve!.
02180
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Enm~L→`!5
1

2
dnmH F ~np!21~kL !2

~np!2 G
3 lnF ~np!21~kL !2

~kL !2 G21J . ~14!

This limit can be achieved in Eq.~14! by using
lim

L→`
sin@L(kz/22np/2L)#/(kz/22np /2L)52pd (kz2np /L).

Figure 1 also displays the eigenvalues of the diagonal ene
matrix in Eq. ~14!. A comparison of the two curves clearl
highlights the importance of end effects for PE chains
finite length.

The electrostatic energy comprises one portion of the t
energy of the semiflexible PE. The other contribution aris
from the elastic modulus, quantified by the ‘‘bare’’ persi
tence length,p0 and appearing in the energy as the first te
on the right-hand side of Eq.~1!. The large eigenvalues o
the matrix T are dominated by the diagonal term
(np)2(,p0 /L) in, for instance, the right-hand side of Eq.~5!.
Thus, the effect of electrostatic interaction is more p
nounced on the lower eigenvalues, while it is swamped
semiflexible energetics at short length scales. In Fig. 2,
eigenvalues of the total Hamiltonian are compared with
bending eigenvalues. Only the first few eigenvalues are
tinguishable from each other. The value ofn for which the
electrostatic effects can be neglected depends on the stre
of electrostatic interactionbL and the intrinsic persisten
length.

The general behavior of the larger eigenvalues associ
with ‘‘pure’’ electrostatic energy, which grow logarithmicall
with indexn, is fundamentally different from those resultin
in ‘‘pure’’ elastic energy, which grow quadratically with in
dex. In the case of a neutral polymer with an intrinsic p
sistence length that is comparable with the total length
polymer, the series in Eq.~13! converges very rapidly, as
noted in Ref.@12#. When the chain is charged, and especia
when the persistence length is predominantly due to elec
static effects, more terms in the series in Eq.~13! must be
preserved in order to obtain a stable answer forG(r ). In our

d

FIG. 2. ~Color online only! Eigenvalues of an elastic charge
rod with ,p0 /L50.5, kL50, andbL5500. The bending eigenen
ergies are distinguishable from total ones only for lower values on.
Comparison of the first 20 eigenvalues of bending~solid line! and
total ~dashed line! eigenvalues could be seen in the inset.
3-4
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calculation, the matrixT is truncated at a size much great
than the number of terms needed to obtain an accurate
swer for the series in Eq.~13!. There are two reasons for thi
First, the greater the dimension of the truncated matrix,
more accurate are the values of lower eigenvalues wh
participate in the sum. Second, retaining more terms in
product on the right-hand side of Eq.~12! helps us achieve a
higher accuracy in our result for the functionf (n). In prac-
tice, we increased the dimension of the matrices until
effect ~on the end-to-end distribution function! of a further
increase in the size ofT by a factor of 4 was less than a pa
in a thousand.

The truncation of the matrices above is also related to
short distance cutoffb. The dimensions of these matrice
should not be larger thanL/b. This is because matrices co
responding to a cosine basis set for which the wave num
is greater than 1/b are influenced by features at length sca
shorter thanb, and such features are inconsistent with t
inherent coarse graining in our energy expression. We de
mine the truncation of matrices by looking for convergen
of the numerical procedure, as noted above. We then ch
to see that the sizeN of the basis set satisfiesN<L/b. At no
point in our calculations was this inequality violated.

As r→1, the dimension of the matrices must be very hi
in order to obtain reliable answers. It is possible to calcul
the integral in Eq.~10! numerically without performing con
tour integration. This method is very time consuming, bu
is more reliable because this way we reduce significantly
roundoff error caused by the sum in Eq.~13!. We used this
approach for very large values ofbL.

B. Exact analytical eigenfunctions and eigenvalues of the
unscreened Coulomb interaction energy

Although we are not able to produce exact, analytical
lutions to the eigenvalue equations of the quadratic weigh
Eq. ~6!, for arbitrary values of the inverse screening leng
k, it has proven possible to obtain the eigenfunctions a
eigenvalues of the unscreened version of the energy oper
The results of the analytical investigation provide a check
our numerics and provide insight into the qualitative beh
ior of eigenfunctions and eigenvalues of the energy opera
controlling the conformational statistics of rodlike PE’s.

As it turns out, the investigation of the properties of t
operator in this special case is most conveniently carried
in ‘‘real space,’’ that is, with arclengths as the independen
variable. In this section, we will summarize the methods u
lized and the results obtained in this investigation. The
tails of the calculation are presented in Appendix B. The k
result is that the eigenfunctions of the unscreened Ha
tonian have the form

jk~s!5s21/2sinS k ln
s

b
1f~k! D ~15!

and that the eigenvalues are given by

l~k!5LS 2
1

2
1 ik D , ~16!
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where the functionL(p) is defined in Eq.~B12!. When the
dimensionless wave-vector-like quantity,k, is large, the ei-
genvalues are essentially linear in lnk. This is to be expected
given the form of the unscreened Coulomb interaction, a
is, in fact, consistent with our numerical results.

We can now attempt a comparison between the exp
sions for the eigenfunctions in Eq.~15!, and eigenvalues in
Eq. ~16!, and the numerically generated eigenfunctions a
eigenvalues of the unscreened energy operator whose m
elements in the cosine basis are given in Eq.~6!. The eigen-
values are compared in Fig. 3, and a comparison for a l
lying eigenvector is displayed in Fig. 4. As indicated by t
figures, the numerical correspondence is excellent. The q
ity of the comparison serves as a validation of the numer
calculations carried out here.

FIG. 3. Comparison of the eigenvaluesl(k) as given by Eq.
~B14! with the numerical eigenvalues of the unscreened Coulo
energy matrix as given by Eq.~6!. As indicated in the figure, the
horizontal axis is the index of the eigenvalue. The formula~B14! is
the solid curve, passing through the filled circles, which indicate
location of the eigenvalues of the discrete version of the operato
Eq. ~6!. To facilitate the visual comparison, the numerical eigenv
ues have been ‘‘thinned out,’’ in that every third numerical eige
value is shown.

FIG. 4. Comparison of the numerically determined eigenvec
of the discrete version of the Coulomb energy kernel associa
with the sixth-lowest eigenvalue~solid curve! and of the eigenfunc-
tion generated by the formula~15! ~dashed curve!. The value of the
parameterk in that formula is adjusted to optimize the fit betwee
the two curves, with the use of a least-squares procedure. The a
value ofk used here is 1.3. The oscillations in the solid curve
the result of the cutoff in the cosine basis set.
3-5
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It is possible to assess the importance of a small te
representing the influence of ‘‘pure’’ bending energy,
treating that term as a perturbation of the overall energy
the polyelectrolyte chain. At first order in perturbatio
theory, a straightforward calculation leads to the followi
result for the ratio of the pure bending energy contribution
the eigenvalue to the zeroth-order energy resulting from
unscreened Coulomb interaction:

Ebending

ECoulomb
5

,p0@~114k2!/4#@k2/~11k2!#

2,Bl~k!ln~L/b!
. ~17!

Note that in the limit of an infinitely long polyelectrolyt
chain, the unscreened Coulomb interaction always do
nates. The divergence in the denominator asL→` is, how-
ever, quite slow. As a practical matter, the bending ene
due to the intrinsic cost of introducing curvature into a sem
flexible chain will eventually overcome the Coulomb ener
as a contribution to the conformation energy of the chain
light of this fact, one can obtain results for the end-to-e
distribution of an unscreened chain in the presence of a b
ing energy.

In this regard, it should be noted that in the absence o
bending energy, the expression~10! for the end-to-end dis-
tribution of an unscreened polyelectrolyte chain is forma
divergent. This is because of the very slow increase in
eigenvalues~16! as a function ofk. A full investigation of the
conformational statistics of the unscreened polyelectro
chain has not yet been carried out, and will in all probabil
yield surprises.

IV. RADIAL DISTRIBUTION FUNCTION
OF POLYELECTROLYTES

Using the eigenvalues of the effective Hamiltonian for t
rodlike PE, we can calculate the radial distribution functi
from Eq. ~13!. Figure 5 illustrates the effect of the screen
electrostatic interaction on the distribution function of a ne
tral chain ~dashed line!, for three different values ofkL
512, kL56, andkL53. bL5100 for the three PE distri
butions. As manifested in the figure, the distribution functi
of the polyelectrolyte has shifted toward larger extensio
and is peaked more sharply around the maximum comp

FIG. 5. ~Color online only! Comparison of distribution function
of polyelectrolytes forkL512, kL56, andkL53, respectively,
from left to right.
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to the neutral chain. Upon decreasing the screening len
the monomer-monomer repulsion becomes more stron
screened and the distribution function of the end-to-end
tance peaks towards shorter extensions.

To construct a quantitative measure for the elasticity
polyelectrolytes, we investigate to what degree and un
what conditions the radial distribution function of a polyele
trolyte can be reproduced by the distribution of a neut
chain with an adjusted persistence length. To this end,
attempt to collapse the distribution function of a polyelect
lyte onto the distribution function of a wormlike chain wit
an effective,p , and observe that the answer to the abo
question depends on the values of,p0 /L, kL, andbL.

We investigate the effects of overall charging of the ch
as quantified by the combinationbL, of the screening length
equal tok21, of the length of the chain,L and of the chain’s
intrinsic stiffness, described in terms of the bare persiste
length, ,p0. We are able to identify regimes in which th
conformational statistics of a rodlike PE is effectively indi
tinguishable from that of a neutral WLC, and we also fi
that there are regions in parameter space in which the ra
distribution of a charged semiflexible rodlike chain cannot
reproduced by the corresponding distribution of a neu
chain.

Our conclusions are summarized in the four sections
low. Briefly, we find that sufficiently strong charging, a su
ficiently long screening length, sufficiently short overa
chain length, or sufficiently weak intrinsic stiffness can gi
rise to deviations between the conformational statistics o
PE and that of a WLC.

A. Effect of electrostatic charging

There is a substantial regime in the parameter spac
which the distribution of a polyelectrolyte matches exac
that of a wormlike chain with an adjusted persistence leng
particularly when the electrostatic interaction plays a pert
bative role in the chain energetics. There are also regime
which the electrostatic interaction gives rise to a substan
portion of the stiffening energy, and in which the radial d
tribution of the PE is the same as that of a neutral WLC. F
a sufficiently strong electrostatic interaction, however,
polyelectrolyte distribution begins to deviate from the worm
like chain form. This is illustrated in Fig. 6, where the pol
electrolyte distribution is compared with that of the best
fective wormlike chain description for the two cases of lo
and high charging. It is clear that at strong enough charg
the electrostatic energy establishes the conformational st
tics.

B. Effect of electrostatic screening

The degree of screening of the electrostatic interact
similarly affects the form of the end-to-end distribution.
the high-ionic-strength regime, it is possible to obtain a s
isfactory match of the polyelectrolyte distribution with th
of an effective wormlike chain. However, as screening d
creases, the polyelectrolyte distribution deviates significan
from the wormlike chain form. Comparison of Figs. 6~a! and
7 illustrates the difference between high and low screen
for a given intrinsic stiffness and charging. We observe t
3-6
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as we increase screening, the two distributions collapse
top of each other. Our calculations verify that under phy
ological conditions (k51 nm21), the distribution functions
for rodlike DNA segments (L&100 nm) as well as those o
stiffer actin filaments also collapse onto the end-to-end
tribution for neutral chains with an effective persisten
length given by Eq.~18!.

C. Effect of finite length

In most of the studies of the elasticity of polyelectrolyt
that have been carried out to this point, the finite length
the polyelectrolyte and the corresponding end effects h
been assumed to be unimportant. We have reexamined
assumption by considering two sets of parameters that co
spond to identical values for,p0 , b, and k, and different
values for the contour lengthL of the polyelectrolytes. As
can be seen in Fig. 8, while the distribution for longer cha
can be satisfactorily collapsed onto that of a wormlike cha
the situation is completely different for shorter chains. T
highlights the importance of end effects in the elasticity
polyelectrolytes.

It is important to note that a rescaling of the backbo
length of the PE is not an acceptable stratagem for improv
the agreement between the PE radial distribution and tha
a WLC. This is because the backbone length is essent
fixed by the rodlike chain condition. The shortening a

FIG. 6. ~Color online only! ~a! The distribution for a polyelec-
trolyte with ,p050.5, bL5600, andkL510, compared to that o
a wormlike chain with,p/L51.3. Inset:~b! The distribution for a
polyelectrolyte with,p050.5, bL560, andkL510, compared to
that of a wormlike chain with,p50.6 ~two superimposed curves!.

FIG. 7. The distribution for a polyelectrolyte with,p050.5,
bL5600, andkL550, compared to that of a wormlike chain wit
,p50.56 ~two superimposed curves!.
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thickening that are associated with intermediate blobl
structures@16# will not occur. In fact, we have observed th
a reduction in the effective value ofL actually degrades the
quality of the correspondence between the conformatio
statistics of a PE and those of the corresponding WLC.
general, our calculations indicate that the difference betw
the radial distribution of the PE and the WLC is partly due
the influence of end effects. A complete investigation
these effects is described in Ref.@17#.

D. Effect of intrinsic stiffness

Figure 8~b! indicates that forkL51 andbL5360 when
the intrinsic persistence length of a chain is small (,p0!L
50.01), the radial distribution function of a polyelectroly
does not exhibit near-perfect matching with that of an u
charged wormlike chain . In this almost unscreened ca
matching is achieved, when the chain becomes sufficie
stiff. If ,p0 /L is increased to 35, whilekL remains equal to
1 andbL5360, the radial distribution of a PE will be indis
tinguishable from the corresponding distribution of a neut
WLC with a persistence length,p539L. The fact that such
a large intrinsic persistence length is required to achieve
kind of matching of the two distribution highlights the im
portance of electrostatic interactions in this case.

E. Applicability of the WLC model: A general diagram

The effects discussed above can be summarized in a
eral diagram in the three-dimensional parameter space.
diagram, shown in Fig. 9, illustrates the conditions und
which a WLC model provides an accurate description of
conformational statistics of a short, rodlike PE. The lin
shown indicate the locations of the crossover regions
separate the regime in which one can think of a short s
ment of a PE as a WLC with a modified persistence len
from the regime in which the statistics of a PE is fundame
tally distinct from that of a WLC.

As can be seen in Fig. 9, for a given value of the scre
ing parameter, charging up the PE will cause a crosso

FIG. 8. ~Color online only! ~a! The distribution for a polyelec-
trolyte with ,p0 /L50.0001,bL536 000, andkL5100, compared
to that of a wormlike chain with,p/L50.87 ~two superimposed
curves!. Inset: ~b! The distribution for a polyelectrolyte with
,p0 /L50.01, bL5360, andkL51, compared to that of a worm
like chain with,p50.565. The difference between the two sets
parameters is only in the length of the chain.
3-7
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from WLC into non-WLC behavior. This crossover is, how
ever, hampered by increased intrinsic stiffness.

V. ELECTROSTATIC PERSISTENCE LENGTH

In this section, we investigate the concept of the elec
static persistence length. As in the preceding section, we
find that there are regimes in which Odijk’s formula@Eq.
~18! below# for the effective persistence length of a PE@6# is
accurate, and that there are regimes in which it does not h
As it turns out, there is a strong correlation between
accuracy of this formula and the correspondence between
and neutral WLC conformational statistics. When the rad
distribution function of a PE is well reproduced by that of
neutral WLC, the persistence length of the correspond
WLC is accurately predicted by Odijk’s formula. Converse
when the two distributions do not collapse on one anoth
the persistence length of the ‘‘best-fit’’ WLC is not predicte
by that formula.

We have seen in Sec. IV that one can collapse the di
bution function of a polyelectrolyte onto the distributio
function of a wormlike chain with an adjusted persisten
length whenever the Coulomb interaction is no more tha
perturbation to the mechanical stiffness of the chain, or w
Debye screening is sufficiently strong. In these regimes,
persistence length of the neutral chain follows Odijk’s p
diction, in that,,p5,e1,p0, where,p is the effective per-
sistence length of the charged chain, and the electros
persistence length,e is given as@6#

,Odijk5
bL2

12 Fe2kLS 1

kL
1

5

~kL !2
1

8

~kL !3D
1

3

~kL !2
2

8

~kL !3G , ~18!

which reduces to,OSF[b/4k2 for large kL @6,7#. For in-
stance, atbL5600 andkL550, if we add,OSF50.06 to

FIG. 9. ~Color online only! The diagram delineating the regime
in which the statistics of a rodlike PE is the same as that of a W
with a suitably modified persistence length from the regimes
which the statistics of the two models are fundamentally differe
The curves separating the two regimes correspond to,e /,Odijk

50.58 for various values of,p0 /L. These lines also indicate th
values ofb0L in Eq. ~19! at different values ofkL and,p0 /L. No
curves were drawn outside of the range of rodlike behavior. For
reason, the curves for,p0 /L50.1 and,p0 /L50.3 are truncated.
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,p0/L50.5, we find,p50.56. The distribution function of
this polyelectrolyte collapses perfectly onto that of a wor
like chain with ,p50.56. It is important to note that th
expression for,Odijk was derived under the assumption th
,p0;L, the contour length of the chain,L, is of the order of
its intrinsic persistence length,p0 and that the electrostati
interaction has the limited effect of ‘‘perturbing’’ the worm
like chain shape of the chain@6#. Our results confirm the
validity of Odijk-Skolnick-Fixman~OSF! formula in the re-
gime in which it is expected to be correct (kL@1).

For long chains, substantial charging is required in or
to enforce the rodlike limit. It is important to note that d
spite the substantial charging of the chain, the ratio of
length of the PE to the screening length,kL, must be suffi-
ciently large. This requirement is essential in order to mi
mize the strong influence of the end effects on conform
tional statistics of charged chains.

The important characteristic of this regime is that,p0
!,e and thus electrostatic energy no longer plays a per
bative role. However, we find that in this regime Odijk
formula works perfectly well, provided the screening
strong enough. For example, at,p0 /L50.0001, bL
536 000, andkL5100, we find ,e /L50.87 which is a
near-perfect match with,Odijk ~see Fig. 8!. The accuracy of
Odijk’s formula when,e@,p0 is not at all obvious, as OSF
formula was derived in the regime where electrostatic int
action plays a perturbative role.

We emphasize that the reason for the high quality of
match with OSF in this regime is different from the reas
for the corresponding result obtained by Khokhlov and K
achaturian@18# for weakly charged flexible chains. In ou
case, the chain is stiff in all length scales; the possibility
renormalizing the length and/or charge is thus excluded
our formulation.

As noted in Sec. IV, increasing the electrostatic coupl
or screening length, one encounters a regime in which
no longer possible to obtain near-perfect collapse of
polyelectrolyte distribution onto that of an effective worm
like chain. Figure 10 displays the polyelectrolyte end-to-e
distribution ~solid curve! along with the modified wormlike
chain distribution~dashed curve! in a case in which it is
possible to obtain a good, but not perfect fit. The fit w
obtained by matching the location of the maxima of the t
distributions, and the electrostatic persistence length att
uted to the polyelectrolyte distribution is that of the worm

C
n
t.

is

FIG. 10. ~Color online only! The intrinsic persistence length o
the charged chain is,p0 /L50.5, bL545, andkL52. The persis-
tence length of the wormlike chain is,p /L50.767.
3-8
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like chain associated with the dashed curve. The PE di
bution shown in the figure matches the result of compu
simulation of a rodlike PE@19#. In this case the ratio o
electrostatic persistence length extracted from the distr
tion function to Odijk’s persistence length is,e /,Odijk
50.58. As noted at the beginning of this section, the m
the two distributions are different from each other, the m
the effective persistence length of the polyelectrolyte de
ates from the Odijk’s prediction. For example, the pers
tence length of the wormlike chain shown in Fig. 8~b! is
,p/L50.565, while the effective persistence length of t
polyelectrolyte according to Odijk is,p01,Odijk54.52. The
two distributions differ significantly and the ratio i
,e /,Odijk50.12.

Our general observation is that the ratio of,e extracted
from the effective wormlike chain distribution to Odijk’s pe
sistence length correlates with the quality of the fit of
effective wormlike chain end-to-end distribution to that of
polyelectrolyte. When this ratio is equal to 1, the polyele
trolyte can be completely described in terms of a worml
chain. As this ratio decreases, the deviation becomes m
pronounced. Figure 9 displays a diagram, which delinea
the quality of the fit. The line that is used in the figure
separate the two regimes corresponds to,e /,Odijk50.58. As
indicated in this figure~and described in Sec. IV E!, for fixed
kL, when bL is below a certain value the polyelectroly
behaves like a wormlike chain, while for largerbL the two
distributions start to differ significantly. This crossover sca
is sensitive to the intrinsic flexibility of the PE, as shown
Fig. 9.

There is a substantial difference between the electros
persistence length of a rodlike polyelectrolyte and Odij
prediction as we increase the electrostatics strengthbL. As
illustrated in Fig. 11, the deviation of,e /L from ,Odijk /L,
with increasingbL is more pronounced at lower values
kL. At kL517, this deviation becomes evident whenbL
;1000. However, atkL52, the deviation is evident alread
whenbL;30.

A review of the current literature on elasticity of polyele
trolytes reveals that there is no simple theory for comput
,e with arbitrary intrinsic stiffness. It is generally believe
that as long as a polyelectrolyte chain is stiff, the depende

FIG. 11. ~Color online only! Comparison of our results for th
electrostatic persistence length with Odijk’s finite size formu
~solid line! at kL52 with ,p0 /L50.5 ~filled circles! and ,p0 /L
50.01 ~hollow circles!. The inset is forkL517 and,p0 /L50.5.
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of ,e on k is correctly given by the OSF formula. Howeve
our results indicate that in certain regimes the electrost
persistence length,e depends on,p0, and is smaller than is
predicted by the OSF formula. Figure 11 shows that the e
trostatic persistence length of a rodlike polyelectroly
,e /L, depends on,p0 /L. This dependence is not present
Odijk’s formula.

Our general observation of the curves of,e versusbL is
that they asymptote to a power law of the form,e}(bL)x,
where the exponentx(kL) is less than 1. This behavior ha
been predicted by Barrat and Joanny with an exponenx
51/2 in the limit bL→` @8#. We find, however, that the
asymptotic limit is approached much more slowly than it
predicted by the Barrat-Joanny crossover formula. The s
tion below describes our attempt to systematize the relat
ship of the effective persistence length to Odijk’s predictio

VI. UNIVERSAL BEHAVIOR

In search of a possible universal pattern which might
late ,p0 /L, bL, andkL to ,e , we have rescaled our graph
for different values of the parameters. To this end, we cho
a value ofb calledb0 such that,e /,Odijk50.58, and rescale
the parameterb with it, where the value of 0.58 is com
pletely arbitrary. We have followed this procedure to resc
our graphs for different values ofkL, keeping,p0 /L con-
stant. Figure 12 contains these rescaled graphs forkL
56,8,10,12, which collapse satisfactorily on top of ea
other. It is important to note that when we choose any ot
ratio of ,e /,Odijk to rescale our graphs, we obtain the sam
universal behavior among our curves. The solid line in F
12 corresponds to the following crossover or interpolat
formula for ,e :

,e5
,Odijk

11c~b/b0!x
, ~19!

plotted with the exponentx50.4. In the above equation,c
50.724 is constant which ensures the ratio of,e /,Odijk for a
given value ofb0.

As exemplified in Fig. 12, this formula provides a remar
able fit to our data. To calculate the exponentx, we have

FIG. 12. ~Color online only! Comparison of our data, suitabl
rescaled, to the expression in Eq.~19! for the form of the correction
to Odijk’s formula for the electrostatic persistence length. T
points correspond to our rescaled plots of,e /L versusbL at kL
56,8,10,12.
3-9
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attempted to fit our curves of ln(,Odijk /,e21) versus
ln(b/b0) to a straight line. As shown in Fig. 13, all our da
are fitted to a straight line with slope approximately equa
0.4. Similar curves have been generated for other, sma
values of,p0 /L. The behavior of these other curves is t
same as the one plotted in Fig. 12.

The quantityb0 is an increasing function of,p0 and k.
We have been able to obtain the value ofb0 from our data.
The crossover discussed in the preceding section oc
when b5b0, which corresponds to,e.0.58,Odijk in Eq.
~19!. Hence, the curves in Fig. 9 indicate the values ofb0L
for different values ofkL and,p0 /L. The dependence ofb0
on the parameters,p0 , k, andL seems to be in general quit
complicated. For ,p0k.1, we seem to find thatb0
;L2k4,p0g(kL), where g is a polynomial function. For
,p0k,1, however, the leading dependence onk seems to be
a much stronger power law. We are still investigating t
dependence ofb0 on the parameters in all the different r
gimes@20#.

VII. FIRST AND SECOND MOMENTS OF THE
DISTRIBUTION

Much theoretical work on electrostatic persistence len
is based on the calculation of^r & or ^r 2& of a polyelectrolyte.
Odijk uses the second moment to test the validity of O
when ,e.,p0 @6#. It is thus crucial to learn to what exten
the conformational statistics of polyelectrolytes are similar
those of wormlike chains when they share the same^r & or
^r 2&. It is not obvious that the matching of first or seco
moments of the end-to-end distribution will yield the matc
ing of the higher moments of the distribution as well.

We extract an ‘‘effective’’ persistence length by matchi
the first or second moments of the end-to-end distance
polyelectrolyte distribution with that of an effective worm
like chain in order to compare our results with other exist
theories. Figure 14 contains the end-to-end distribution fu
tion for a screened polyelectrolyte withkL517, ,p0 /L
50.5, andbL51000 along with the distribution function o
an uncharged wormlike chain with,p /L51.22. The shorter
distribution is adjusted so that its second moment is the s
as that of the polyelectrolyte distribution. It is noteworth
that the persistence length of the uncharged wormlike ch
agrees perfectly well with Odijk’s prediction, while the tw

FIG. 13. Demonstration of the universal scaling behavior
,e . The points correspond to our rescaled plots of,e /L versusbL
at kL56,8,10,12. The equation of the straight line isy50.006
10.401x.
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distribution functions are distinguishable from each other.
general, we observe that the maximum of the wormlike ch
distribution is shifted toward larger extension when w
match ^r 2& of the two distributions as exemplified in th
figure.

Similar results are observed when we match the first m
ment of distribution of a polyelectrolyte with that of a worm
like chain with an adjusted persistence length. In Fig. 15,
distribution function of a polyelectrolyte along with two dis
tribution functions for effective wormlike chains is pre
sented. The dashed line and polyelectrolyte share the s
first moment. As illustrated in the figure, the two distrib
tions differ significantly.

We have compared the electrostatic persistence len
given in Eq.~18! with our results obtained by matching^r 2&
of a PE distribution to that of a WLC distribution. Figure 1
shows that forkL517, our data begin to deviate from
Odijk’s finite size formula whenbL;1200.

It is important to note that when we match the maximu
of distributions to extract an effective persistence length,
deviation from Odijk’s prediction begins atbL;400 for
kL517 ~the inset in Fig. 11!. This is the point when the two

r

FIG. 14. ~Color online only! The taller distribution~solid line!
belongs to a polyelectrolyte atkL517, ,p050.5, andbL51000.
The shorter distribution~dashed line! is adjusted so that its secon
moment is the same as that of the polyelectrolyte distribution.

FIG. 15. ~Color online only! The thin solid line is the plot of
G(r ) for a polyelectrolyte withbL5600, kL50, and ,p0 /L
50.5. The thick solid line with,p0 /L53.1 belongs to a WLC
distribution for which its maximum is matched to that of the P
distribution. The dashed plot is for a neutral chain with,p0 /L
54.86. The dashed distribution and polyelectrolyte have the s
first moment.
3-10
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distributions cease to closely resemble each other. Howe
if we use the matching of the first or second moment
calculate the effective persistence length, the two distri
tions would clearly be distinguishable from each other w
within the regime in which Odijk’s formula for the persis
tence length remained accurate.

This points to the fact that replacing a PE chain by
WLC, when they share the same^r 2& or ^r &, is not well
justified in all regimes and that one should use care in
utilization of the notion of an electrostatic persistence len
based on matching of first or second moments.

VIII. CONCLUSION

The difficulty in producing a complete characterization
the mechanical properties of a charged, semiflexible ch
arises from the existence of a number of length scales in
system. In particular, it is far from clear that the notion o
persistence length provides an adequate description of
mechanical and thermal characteristics of such a chain
light of this, the end-to-end distribution function provides
interesting alternative. Given that the distribution is a fun
tion, rather than a single number, it represents consider
more information about the charged chain.

One important application of this distribution is in th
assessment of the utility of the notion of a persistence len
in that it is possible to compare the distribution obtain
experimentally, via simulations, or as the result of expli
calculations, with the corresponding distribution of a neut
semiflexible chain. On the basis of explicit calculations,
have been able to determine the extent to which the end
end charged chain can be collapsed onto the end-to-end
tribution of a neutral wormlike chain with an adjusted pe
sistence length. Among the regimes in which th
correspondence is achieved are those in which electros
effects play a perturbative role. In addition to collapse of
two distributions in these regimes, we also find that the e
trostatic persistence length is given by the formulas of Od
and OSF. This result is consistent with the assumptions
derlying those formulas. We also observe collapse of the
tributions and can verify the validity of the Odijk and OS
results for the effective persistence length in regimes

FIG. 16. ~Color online only! Comparison of our results for th
electrostatic persistence length with Odjik’s finite size formula@Eq.
~18!# ~solid line! at kL517. Our numerical results are based on t
matching of the second moment of distributions.
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which the charging of the chain is sufficiently strong su
that electrostatic effects dominate purely mechanical ener
ics as long as Debye screening of electrostatic interaction
sufficiently strong.

In fact, we find that there is a strong correlation betwe
correspondence of the distributions of charged and
charged chains and the validity of Odijk’s formula for th
effective persistence length. When the distributions can
collapsed onto each other, the formula proves to be accu
while lack of correspondence of the two distributions is a
companied by inaccuracy of the Odijk result for the effecti
persistence length. Our results indicate that the differe
between the radial distribution of the PE and the WLC c
be attributed, at least in part, to the influence of end effe
In fact, we believe that the behavior of the persistence len
is substantially controlled by end effects. One way of und
standing this is in terms of Odijk’s derivation of the expre
sion ~18! for the electrostatic persistence length@6#. This
derivation is based on a calculation of the energy of a b
segment of a charged rod. A key assumption in this deri
tion is that the segment takes the form of an arc of a circ
End effects are readily associated with the difference
tween the shape of a real bent rod and the circular arc
sumed in Odijk’s derivation. An exploration of these effec
in this context is described in Ref.@17#.

Another important finding is that an effective persisten
length, obtained by locating the maximum of the distrib
tion, can be described in terms of a scaling formula, Eq.~19!.
This formula relates the actual persistence length to
Odijk predictions. The formula is ‘‘universal,’’ in that it has
general form that is independent of the parameters utiliz
and it incorporates a power law that does not appear to
anticipated in the Hamiltonian governing the system, n
does it arise from any simple dimensional analysis. At t
point, we have no explanation for either the universal fo
or the power law.

As noted above, the effect of counterion condensation
been ignored throughout the above work. It has been sh
that counterion condensation modifies the bending rigidity
a semiflexible chain@10,21–23# and may result in the col-
lapse of the PE chain@10#. We have performed a calculatio
of the distribution function taking into account the attracti
interaction due to counterion fluctuations and observed
signature of collapse. In general, one is able to observe
collapse of a charged chain for any strong enough attrac
interaction which is in function of the distance betwe
monomers. We are currently investigating these effects@20#.
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APPENDIX A: EXPANSION OF THE COULOMB
INTERACTION

In this appendix, the expansion of the Coulomb se
interaction for a charged chain that is slightly deform
about the rodlike configuration is derived. Using Fourier re
resentation of the screened Coulomb interaction, we find

E
0

L

dsE
0

L

ds8
e2kur (s)2r (s8)u

ur ~s!2r ~s8!u

5E d3k

~2p!3

4p

k21k2E
0

L

dsE
0

L

ds8exp$ ik•@r ~s!2r ~s8!#%

.E d3k

~2p!3

4p

k21k2E
0

L

dsE
0

L

ds8expH ik'•E
s

s8
dua~u!

2
ikz

2 E
s

s8
dua~u!21 ikz~s82s!J

5E d3k

~2p!3

4p

k21k2E
0

L

dsE
0

L

ds8eikz(s82s)

3F12
1

2 S k'•E
s

s8
dua~u! D

2
ikz

2 E
s

s8
dua~u!21O~a3!G . ~A1!

APPENDIX B: GENERAL FORM OF THE ENERGY
ASSOCIATED WITH DISTORTIONS OF A RODLIKE

POLYELECTROLYTE STIFFENED ENTIRELY
BY UNSCREENED COULOMB INTERACTIONS

Suppose that the tangent vectort(s) is as given by Eq.
~4!. Suppose, also, that the interaction energy of the rod
polyelectrolyte is given by

E5
b

2E0

L

dsE
0

L

ds8V„r ~s!2r ~s8!…. ~B1!

Making use of Eq.~4! and the relationship

r ~s!5E
0

s

t~s1!ds1 , ~B2!

and expanding to the resulting expression for the energyE to
second order in the deviation,a(s), from a straight line in
the z direction, we find that the energy is given by

E5
b

2 H E
0

L

dsE
0

L

ds8V~s2s8!

1E
0

L

dsE
0

L

ds8K~s,s8!a~s!•a~s8!J , ~B3!

where
02180
-

-

e

K~s,s8!5d~s2s8!E
0

L

L~s,s8!ds82L~s,s8!, ~B4!

and

L~s,s8!52E
0

s,

dsaE
s.

L

dsb

V8~sb2sa!

sb2sa
, ~B5!

ands.(,) is the greater~smaller! of s ands8. If the charges
on the polyelectrolyte interact via the unscreened Coulo
potential, then the interactions leading to the kernelL(s,s8)
are straightforward, and we find

L~s,s8!5
1

2 F 1

s.2s,
1

1

L
2

1

s.
2

1

L2s,
G . ~B6!

Note that the kernelL(s,s8) is equal to zero whenever eithe
one of the arguments is equal to 0 orL.

The kernelK is neither local nor is it translationally in
variant. However, if we are interested in what happens in
vicinity of s50, we can simplifyL and, as a consequenc
K. When boths and s8 are much smaller thanL, we can
replaceL as given by Eq.~B6! by

Ln~s,s8!5
1

2 F 1

s.2s,
2

1

s.
G . ~B7!

The kernelK that results from this newL via Eq.~B4! is still
nonlocal and is not translationally invariant. However, it
possible to obtain, by inspection, its eigenfunctions and th
associated eigenvalues.

We assume that the minimum spacing between adja
charges,b, is small, and we assume that we can retain th
terms that are leading order in ratios ofb to other lengths in
the system. Making use of these assumptions, we are ab
obtain, by inspection, results for the eigenfunctions and
genvalues of the energy operatorK.

We start by noting that the convolution of the energy k
nel in Eq.~B7! with the functionsp is equal to

spH 2ln
s

a
1pE

0

1

ap21ln~12a!da2pE
1

`

ap21ln~a21!da

2
1

p11
1

1

pJ . ~B8!

FIG. 17. The functionL(p) as a function of realp.
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The assumption underlying the calculations leading to
pression~B8! is that the integrand is fundamentally conve
gent. That is, we ignore the possibility that the integra
yields nonintegrable divergences anywhere in the region
integration. We now make use of the following relations:

E
0

1

ap21ln~12a!da52g2c~p11!, ~B9!

E
1

`

ap21ln~a21!da5g1c~2p!, ~B10!

where c(x), the digamma function, is the logarithmic d
rivative of the gamma function,

c~x!5
1

G~x!

d

dx
G~x!. ~B11!

This means that the ‘‘eigenvalue’’ associated with the eig
function sp is given by

L~p!52g1c~11p!1c~2p!1
1

p11
2

1

p
21.

~B12!

Figure 17 displays the functionL(p) as a function of the rea
argumentp. Note that the function is symmetric aboutp
51/2. It can be readily shown that the functionL(p) is real
if p521/26 ik, with k real. The proper eigenfunctions an
eigenvalues are associated with just such values ofp. In fact,
we can choose for eigenfunctions of the operator

jk~s!5s21/2sinS k ln
s

b
1f~k! D . ~B13!

If we then require that the derivative of the eigenfuncti
jk(s) is zero at the boundary (s5b), then f(k)
5arctan 2k. It can be shown that the integrations leading
the eigenvalue are all convergent, and the eigenvalue ha
form L(21/21 ik). A plot of this eigenvalue as a functio
of the parameterk is displayed in Fig. 18. This eigenvalue
an even function ofk. As it turns out, an excellent numerica
approximation to

FIG. 18. The functionl(k)5L(21/21 ik), for k.0.
02180
-

d
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-

the

l~k!5L~21/21 ik ! ~B14!

is given by

l~k!'0.227 411 21 ln@110.929k2#. ~B15!

The spacing of the eigenvalues is determined by the allow
values of the parameterk in Eq. ~B14!. If we assume that the
eigenfunctions pass through zero at some large value ofs, or
that they have a zero slope there, then it is straightforwar
show that the lowest eigenvalues will be associated w
equally spacedk’s. Figure 3 contains a comparison betwe
the eigenvalues given by Eq.~B14! with equally spacedk’s
and the numerically calculated eigenvalues of the interac
operator with matrix elements in the cosine basis set
shown in Eq.~6!.

As an additional check on the validity of the results pr
sented here, we compare the eigenfunctions in Eq.~B13! to
the eigenvectors of matrix in Eq.~6!. The eigenvectors are
plotted in real space. We find that for low eigenvalues,
expressions in Eq.~B13! provide an excellent match to th
results of numerical calculations. Figure 4 displays a co
parison between an eigenfunction as given by Eq.~B13! and
the numerically determined eigenvector associated with
sixth-lowest eigenvalue of the discrete version of the kern
The value ofk in the formula for the eigenfunction was ad
justed with the use of a least-squares procedure. The ei
functions have zero slope at the boundary of the region
sociated with the smallest value ofs. The quantitys does not
range over the entire interval, from 0 to 1, because the a
lytic eigenfunctions generated here are expected to be a
rate only in the regimes!L, whereL has been set equal t
1 in the case at hand.

The least-squares fitting of the analytical eigenfunctio
to numerical eigenvectors leads to a set of values for
parameter,k. Figure 19 displays the values ofk, plotted
against the index of the eigenvalues. As indicated by
straight line drawn through them, thek’s are approximately
equally spaced.

FIG. 19. The values of the parameterk.
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